Internet-Draft | Voucher Artifact | July 2024 |
Watsen, et al. | Expires 9 January 2025 | [Page] |
This document defines a strategy to securely assign a pledge to an owner using an artifact signed, directly or indirectly, by the pledge's manufacturer. This artifact is known as a "voucher".¶
This document defines an artifact format as a YANG-defined JSON or CBOR document that has been signed using a variety of cryptographic systems.¶
The voucher artifact is normally generated by the pledge's manufacturer (i.e., the Manufacturer Authorized Signing Authority (MASA)).¶
This document updates RFC8366, merging a number of extensions into the YANG. The RFC8995 voucher request is also merged into this document.¶
This note is to be removed before publishing as an RFC.¶
Status information for this document may be found at https://datatracker.ietf.org/doc/draft-ietf-anima-rfc8366bis/.¶
Discussion of this document takes place on the anima Working Group mailing list (mailto:[email protected]), which is archived at https://mailarchive.ietf.org/arch/browse/anima/. Subscribe at https://www.ietf.org/mailman/listinfo/anima/.¶
Source for this draft and an issue tracker can be found at https://github.com/anima-wg/voucher.¶
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.¶
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.¶
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."¶
This Internet-Draft will expire on 9 January 2025.¶
Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights reserved.¶
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.¶
This document defines a strategy to securely assign a candidate device (pledge) to an owner using an artifact signed, directly or indirectly, by the pledge's manufacturer, i.e., the Manufacturer Authorized Signing Authority (MASA). This artifact is known as the "voucher".¶
The voucher artifact is a JSON [RFC8259] document that conforms with a data model described by YANG [RFC7950]. It may also be serialized to CBOR [CBOR]. It is encoded using the rules defined in [RFC7951], and is signed using (by default) a CMS structure [RFC5652].¶
The primary purpose of a voucher is to securely convey a certificate, the "pinned-domain-cert" (and constrained variations), that a pledge can use to authenticate subsequent interactions. A voucher may be useful in several contexts, but the driving motivation herein is to support secure onboarding mechanisms. Assigning ownership is important to device onboarding mechanisms so that the pledge can authenticate the network that is trying to take control of it.¶
The lifetimes of vouchers may vary. In some onboarding protocols, the vouchers may include a nonce restricting them to a single use, whereas the vouchers in other onboarding protocols may have an indicated lifetime. In order to support long lifetimes, this document recommends using short lifetimes with programmatic renewal, see Section 9.1.¶
This document only defines the voucher artifact, leaving it to other documents to describe specialized protocols for accessing it. Some onboarding protocols using the voucher artifact defined in this document include: [ZERO-TOUCH], [SECUREJOIN], and [BRSKI].¶
This document uses the following terms:¶
Used throughout to represent the voucher as instantiated in the form of a signed structure.¶
The process where a pledge component obtains cryptographic key material to identify and trust future interactions within a specific domain network. Based on imprinted key material provided during manufacturing process (see imprinting).¶
The set of entities or infrastructure under common administrative control. The goal of the onboarding protocol is to enable a pledge component to join a domain and obtain domain specific security credentials.¶
The process where a device obtains the cryptographic key material to identify and trust future interactions generally as part of the manufacturing. This term is taken from Konrad Lorenz's work in biology with new ducklings: "during a critical period, the duckling would assume that anything that looks like a mother duck is in fact their mother" [Stajano99theresurrecting]. An equivalent for a device is to obtain the fingerprint of the manufacturer's root certification authority (root ca) certificate. A device that imprints on an attacker suffers a similar fate to a duckling that imprints on a hungry wolf. Imprinting is a term from psychology and ethology, as described in [imprinting].¶
A representative of the domain that is configured, perhaps autonomically, to decide whether a new device is allowed to join the domain. The administrator of the domain interfaces with a join registrar (and Coordinator) to control this process. Typically, a join registrar is "inside" its domain. For simplicity, this document often refers to this as just "registrar".¶
The entity that, for the purpose of this document, issues and signs the vouchers for a manufacturer's pledges. In some onboarding protocols, the MASA may have an Internet presence and be integral to the onboarding process, whereas in other protocols the MASA may be an offline service that has no active role in the onboarding process.¶
An on-path active attacker that presents itself as a legitimate registrar, but which is in fact under the control of an attacker.¶
Onboarding describes the process to provide necessary operational data to pledge components and completes the process to bring a device into an operational state. This data may be configuration data, or also application specific cryptographic key material (application speciifc security credentials).¶
The entity that controls the private key of the "pinned-domain-cert" certificate conveyed by the voucher.¶
The prospective component attempting to find and securely join a domain. When shipped or in factory reset mode, it only trusts authorized representatives of the manufacturer.¶
See join registrar.¶
Where a pledge component makes no security decisions but rather simply trusts the first domain entity it is contacted by. Used similarly to [RFC7435]. This is also known as the "resurrecting duckling" model.¶
A short form for Voucher Artifact. It refers to the signed statement from the MASA service that indicates to a pledge the cryptographic identity of the domain it should trust. When clarity is needed, it may be preceeded by the type of the signature, such as CMS, JWS or COSE.¶
The raw (serialized) representation of the YANG without any enclosing signature. Current formats include JSON and CBOR.¶
A signed artifact sent from the Pledge to the Registrar, or from the Registrar to the MASA for Voucher acquisition.¶
A signed artifact sent from the Pledge to the Registrar. It is a special form of Voucher Request.¶
A signed artifact sent from the Registrar to the MASA. It is a special form of Voucher Request.¶
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.¶
A voucher is a cryptographically protected statement to the pledge device authorizing a zero-touch "imprint" on the join registrar of the domain. The specific information a voucher provides is influenced by the onboarding use case.¶
The voucher can impart the following information to the join registrar and pledge:¶
Indicates the method that protects the imprint (this is distinct from the voucher signature that protects the voucher itself). This might include manufacturer-asserted ownership verification, assured logging operations, or reliance on pledge endpoint behavior such as secure root of trust of measurement. The join registrar might use this information. Only some methods are normatively defined in this document. Other methods are left for future work.¶
Indicates how the pledge can authenticate the join registrar. This document defines a mechanism to pin the domain certificate, or a raw public key. Pinning a symmetric key, or "CN-ID" or "DNS-ID" information (as defined in [RFC6125]) is left for future work.¶
Time- or nonce-based information to constrain the voucher to time periods or bootstrap attempts.¶
A number of onboarding scenarios can be met using differing combinations of this information. All scenarios address the primary threat of an on-path active attacker (or MiTM) impersonating the registrar. This would gain control over the pledge device. The following combinations are "types" of vouchers:¶
Assertion | Registrar ID | Validity | ||||
---|---|---|---|---|---|---|
Voucher Type | Logged | Verified | Trust Anchor | CN-ID or DNS-ID | RTC | Nonce |
Audit | X | X | X | |||
Nonceless Audit | X | X | X | |||
Owner Audit | X | X | X | X | X | |
Owner ID | X | X | X | X | ||
Bearer out-of-scope | X | wildcard | wildcard | optional | opt |
NOTE: All voucher types include a 'pledge ID serial-number' (not shown here for space reasons).¶
An Audit Voucher is named after the logging assertion mechanisms that the registrar then "audits" to enforce local policy. The registrar mitigates a malicious registrar by auditing that an unknown malicious registrar does not appear in the log entries. This does not directly prevent a malicious registrar but provides a response mechanism that ensures the MiTM is unsuccessful. The advantage is that actual ownership knowledge is not required on the MASA service.¶
An Audit Voucher without a validity period statement. Fundamentally, it is the same as an Audit Voucher except that it can be issued in advance to support network partitions or to provide a permanent voucher for remote deployments.¶
An Audit Voucher where the MASA service has verified the registrar as the authorized owner. The MASA service mitigates a MiTM registrar by refusing to generate Audit Vouchers for unauthorized registrars. The registrar uses audit techniques to supplement the MASA. This provides an ideal sharing of policy decisions and enforcement between the vendor and the owner.¶
Named after inclusion of the pledge's CN-ID or DNS-ID within the voucher. The MASA service mitigates a MiTM registrar by identifying the specific registrar (via WebPKI) authorized to own the pledge.¶
A Bearer Voucher is named after the inclusion of a registrar ID wildcard. Because the registrar identity is not indicated, this voucher type must be treated as a secret and protected from exposure as any 'bearer' of the voucher can claim the pledge device. Publishing a nonceless bearer voucher effectively turns the specified pledge into a "TOFU" device with minimal mitigation against MiTM registrars. Bearer vouchers are out of scope.¶
[RFC8366] was published in 2018 during the development of [BRSKI], [ZERO-TOUCH] and other work-in-progress efforts. Since then the industry has matured significantly, and the in-the-field activity which this document supports has become known as onboarding rather than bootstrapping.¶
The focus of [BRSKI] was onboarding of ISP and Enterprise owned wired routing and switching equipment, with IoT devices being a less important aspect. [ZERO-TOUCH] has focused upon onboarding of CPE equipment like cable modems and other larger IoT devices, again with smaller IoT devices being of less import.¶
Since [BRSKI] was published there is now a mature effort to do application-level onboarding of constrained IoT devices defined by The Thread and Fairhair (now OCF) consortia. The [cBRSKI] document has defined a version of [BRSKI] that is useable over constrained 802.15.4 networks using CoAP and DTLS, while [I-D.selander-ace-ake-authz] provides for using CoAP and EDHOC on even more constrained devices with very constrained networks.¶
[PRM] has created a new methodology for onboarding that does not depend upon a synchronous connection between the Pledge and the Registrar. This mechanism uses a mobile Registrar Agent that works to collect and transfer signed artifacts via physical travel from one network to another.¶
Both [cBRSKI] and [PRM] require extensions to the Voucher Request and the resulting Voucher. The new attribtes are required to carry the additional attributes and describe the extended semantics. In addition [cBRSKI] uses the serialization mechanism described in [YANGCBOR] to produce significantly more compact artifacts.¶
When the process to define [cBRSKI] and [PRM] was started, there was a belief that the appropriate process was to use the [RFC8040] augment mechanism to further extend both the voucher request [BRSKI] and voucher [RFC8366] artifacts. However, [PRM] needs to extend an enumerated type with additional values and augment can not do this, so that was initially the impetus for this document.¶
An attempt was then made to determine what would happen if one wanted to have a constrained version of the [PRM] voucher artifact. The result was invalid YANG, with multiple definitions of the core attributes from the [RFC8366] voucher artifact. After some discussion, it was determined that the augment mechanism did not work, nor did it work better when [RFC8040] yang-data was replaced with the [RFC8791] structure mechanisms.¶
After significant discussion the decision was made to simply roll all of the needed extensions up into this document as "RFC8366bis".¶
This document therefore represents a merge of YANG definitions from [RFC8366], the voucher-request from [BRSKI], and then extensions to each of these from [cBRSKI], [CLOUD] and [PRM]. There are some difficulties with this approach: this document does not attempt to establish rigorous semantic definitions for how some attributes are to be used, referring normatively instead to the other relevant documents.¶
Three signature systems have been defined for vouchers and voucher-requests.¶
[cBRSKI] defines a mechanism that uses COSE RFC9052, with the voucher data encoded using [I-D.ietf-core-sid]. However, as the SID processe requires up-to-date YANG, the SID values for this mechanism are presented in this document.¶
[jBRSKI] defines a mechanism that uses JSON [RFC8259] and [JWS].¶
The CMS mechanism first defined in [RFC8366] continues to be defined here.¶
The IETF evolution of PKCS#7 is CMS [RFC5652]. A CMS-signed voucher, the default type, contains a ContentInfo structure with the voucher content. An eContentType of 40 indicates that the content is a JSON-encoded voucher.¶
The signing structure is a CMS SignedData structure, as specified by Section 5.1 of [RFC5652], encoded using ASN.1 Distinguished Encoding Rules (DER), as specified in ITU-T X.690 [ITU-T.X690.2015].¶
To facilitate interoperability, Section 11.3 in this document registers the media type "application/voucher-cms+json" and the filename extension ".vcj".¶
The CMS structure MUST contain a 'signerInfo' structure, as described in Section 5.1 of [RFC5652], containing the signature generated over the content using a private key trusted by the recipient. Normally, the recipient is the pledge and the signer is the MASA. In the Voucher Request, the signer is the pledge, or the Registrar. Within this document, the signer is assumed to be the MASA.¶
Note that Section 5.1 of [RFC5652] includes a discussion about how to validate a CMS object, which is really a PKCS7 object (cmsVersion=1). Intermediate systems (such the Bootstrapping Remote Secure Key Infrastructures [BRSKI] registrar) that might need to evaluate the voucher in flight MUST be prepared for such an older format. No signaling is necessary, as the manufacturer knows the capabilities of the pledge and will use an appropriate format voucher for each pledge.¶
The CMS structure SHOULD also contain all of the certificates leading up to and including the signer's trust anchor certificate known to the recipient. The inclusion of the trust anchor is unusual in many applications, but third parties cannot accurately audit the transaction without it.¶
The CMS structure MAY also contain revocation objects for any intermediate certificate authorities (CAs) between the voucher issuer and the trust anchor known to the recipient. However, the use of CRLs and other validity mechanisms is discouraged, as the pledge is unlikely to be able to perform online checks and is unlikely to have a trusted clock source. As described below, the use of short-lived vouchers and/or a pledge-provided nonce provides a freshness guarantee.¶
The voucher's primary purpose is to securely assign a pledge to an owner. The voucher informs the pledge which entity it should consider to be its owner.¶
This document defines a voucher that is a JSON-encoded or CBOR-encoded instance of the YANG module defined in Section 7.3.¶
This format is described here as a practical basis for some uses (such as in NETCONF), but more to clearly indicate what vouchers look like in practice. This description also serves to validate the YANG data model.¶
[RFC8366] defined a media type and a filename extension for the CMS-encoded JSON type. Which type of voucher is expected is signaled (where possible) in the form of a MIME Content-Type, an HTTP Accept: header, or more mundane methods like use of a filename extension when a voucher is transferred on a USB key.¶
The following tree diagram illustrates a high-level view of a voucher document. The notation used in this diagram is described in [RFC8340]. Each node in the diagram is fully described by the YANG module in Section 7.3. Please review the YANG module for a detailed description of the voucher format.¶
module: ietf-voucher structure voucher: +-- voucher +-- created-on? yang:date-and-time +-- expires-on? yang:date-and-time +-- assertion? enumeration +-- serial-number string +-- idevid-issuer? binary +-- pinned-domain-cert? binary +-- domain-cert-revocation-checks? boolean +-- nonce? binary +-- pinned-domain-pubk? binary +-- pinned-domain-pubk-sha256? binary +-- last-renewal-date? yang:date-and-time +-- est-domain? ietf:uri +-- additional-configuration? ietf:uri¶
This section provides voucher examples for illustration purposes. These examples conform to the encoding rules defined in [RFC8259].¶
The following example illustrates an ephemeral voucher (uses a nonce). The MASA generated this voucher using the 'logged' assertion type, knowing that it would be suitable for the pledge making the request.¶
{ "ietf-voucher:voucher": { "created-on": "2016-10-07T19:31:42Z", "assertion": "logged", "serial-number": "JADA123456789", "idevid-issuer": "base64encodedvalue==", "pinned-domain-cert": "base64encodedvalue==", "nonce": "base64encodedvalue==" } }¶
The following example illustrates a non-ephemeral voucher (no nonce). While the voucher itself expires after two weeks, it presumably can be renewed for up to a year. The MASA generated this voucher using the 'verified' assertion type, which should satisfy all pledges.¶
{ "ietf-voucher:voucher": { "created-on": "2016-10-07T19:31:42Z", "expires-on": "2016-10-21T19:31:42Z", "assertion": "verified", "serial-number": "JADA123456789", "idevid-issuer": "base64encodedvalue==", "pinned-domain-cert": "base64encodedvalue==", "domain-cert-revocation-checks": true, "last-renewal-date": "2017-10-07T19:31:42Z" } }¶
[jBRSKI], Section 8 contains examples of vouchers encoded in JSON, and signed with [JWS]. [cBRSKI], Section 9 contains examples of vouchers encoded in CBOR, and signed with [COSE].¶
<CODE BEGINS> module ietf-voucher { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-voucher"; prefix vch; import ietf-yang-types { prefix yang; reference "RFC 6991: Common YANG Data Types"; } import ietf-inet-types { prefix ietf; reference "RFC 6991: Common YANG Data Types"; } import ietf-yang-structure-ext { prefix sx; } organization "IETF ANIMA Working Group"; contact "WG Web: <https://datatracker.ietf.org/wg/anima/> WG List: <mailto:[email protected]> Author: Kent Watsen <mailto:[email protected]> Author: Michael Richardson <mailto:[email protected]> Author: Max Pritikin <mailto:[email protected]> Author: Toerless Eckert <mailto:[email protected]> Author: Qiufang Ma <mailto:[email protected]>"; description "This module defines the format for a voucher, which is produced by a pledge's manufacturer or delegate (MASA) to securely assign a pledge to an 'owner', so that the pledge may establish a secure connection to the owner's network infrastructure. Copyright (c) 2024 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Revised BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info). This version of this YANG module is part of RFC XXXX (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself for full legal notices. The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document are to be interpreted as described in BCP 14 (RFC 2119) (RFC 8174) when, and only when, they appear in all capitals, as shown here."; revision 2023-01-10 { description "updated to support new assertion enumerated type"; reference "RFC ZZZZ Voucher Profile for Bootstrapping Protocols"; } // Top-level statement sx:structure voucher { uses voucher-artifact-grouping; } // Grouping defined for future augmentations grouping voucher-artifact-grouping { description "Grouping to allow reuse/extensions in future work."; container voucher { description "A voucher assigns a pledge to an owner using the (pinned-domain-cert) value."; leaf created-on { type yang:date-and-time; description "A value indicating the date this voucher was created. This node is primarily for human consumption and auditing. Future work MAY create verification requirements based on this node."; } leaf expires-on { type yang:date-and-time; must 'not(../nonce)'; description "A value indicating when this voucher expires. The node is optional as not all pledges support expirations, such as pledges lacking a reliable clock. If this field exists, then the pledges MUST ensure that the expires-on time has not yet passed. A pledge without an accurate clock cannot meet this requirement. The expires-on value MUST NOT exceed the expiration date of any of the listed 'pinned-domain-cert' certificates."; } leaf assertion { type enumeration { enum verified { value 0; description "Indicates that the ownership has been positively verified by the MASA (e.g., through sales channel integration)."; } enum logged { value 1; description "Indicates that the voucher has been issued after minimal verification of ownership or control. The issuance has been logged for detection of potential security issues (e.g., recipients of vouchers might verify for themselves that unexpected vouchers are not in the log). This is similar to unsecured trust-on-first-use principles but with the logging providing a basis for detecting unexpected events."; } enum proximity { value 2; description "Indicates that the voucher has been issued after the MASA verified a proximity proof provided by the device and target domain. The issuance has been logged for detection of potential security issues."; } enum agent-proximity { value 3; description "Mostly identical to proximity, but indicates that the voucher has been issued after the MASA has verified a statement that a registrar agent has made contact with the device."; } } description "The assertion is a statement from the MASA regarding how the owner was verified. This statement enables pledges to support more detailed policy checks. Pledges MUST ensure that the assertion provided is acceptable, per local policy, before processing the voucher."; } leaf serial-number { type string; mandatory true; description "The serial-number of the hardware. When processing a voucher, a pledge MUST ensure that its serial-number matches this value. If no match occurs, then the pledge MUST NOT process this voucher."; } leaf idevid-issuer { type binary; description "The Authority Key Identifier OCTET STRING (as defined in Section 4.2.1.1 of RFC 5280) from the pledge's IDevID certificate. Optional since some serial-numbers are already unique within the scope of a MASA. Inclusion of the statistically unique key identifier ensures statistically unique identification of the hardware. When processing a voucher, a pledge MUST ensure that its IDevID Authority Key Identifier matches this value. If no match occurs, then the pledge MUST NOT process this voucher. When issuing a voucher, the MASA MUST ensure that this field is populated for serial-numbers that are not otherwise unique within the scope of the MASA."; } leaf pinned-domain-cert { type binary; description "An X.509 v3 certificate structure, as specified by RFC 5280, using Distinguished Encoding Rules (DER) encoding, as defined in ITU-T X.690. This certificate is used by a pledge to trust a Public Key Infrastructure in order to verify a domain certificate supplied to the pledge separately by the bootstrapping protocol. The domain certificate MUST have this certificate somewhere in its chain of certificates. This certificate MAY be an end-entity certificate, including a self-signed entity."; reference "RFC 5280: Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)."; } leaf domain-cert-revocation-checks { type boolean; description "A processing instruction to the pledge that it MUST (true) or MUST NOT (false) verify the revocation status for the pinned domain certificate. If this field is not set, then normal PKIX behavior applies to validation of the domain certificate."; } leaf nonce { type binary { length "8..32"; } must 'not(../expires-on)'; description "A value that can be used by a pledge in some bootstrapping protocols to enable anti-replay protection. This node is optional because it is not used by all bootstrapping protocols. When present, the pledge MUST compare the provided nonce value with another value that the pledge randomly generated and sent to a bootstrap server in an earlier bootstrapping message. If the value is present, but the values do not match, then the pledge MUST NOT process this voucher."; } leaf pinned-domain-pubk { type binary; description "The pinned-domain-pubk may replace the pinned-domain-cert in constrained uses of the voucher. The pinned-domain-pubk is the Raw Public Key of the Registrar. This field is encoded as a Subject Public Key Info block as specified in RFC7250, in section 3. The ECDSA algorithm MUST be supported. The EdDSA algorithm as specified in draft-ietf-tls-rfc4492bis-17 SHOULD be supported. Support for the DSA algorithm is not recommended. Support for the RSA algorithm is a MAY."; } leaf pinned-domain-pubk-sha256 { type binary; description "The pinned-domain-pubk-sha256 is a second alternative to pinned-domain-cert. In many cases the public key of the domain has already been transmitted during the key agreement process, and it is wasteful to transmit the public key another two times. The use of a hash of public key info, at 32-bytes for sha256 is a significant savings compared to an RSA public key, but is only a minor savings compared to a 256-bit ECDSA public-key. Algorithm agility is provided by extensions to this specification which can define a new leaf for another hash type."; } leaf last-renewal-date { type yang:date-and-time; must '../expires-on'; description "The date that the MASA projects to be the last date it will renew a voucher on. This field is merely informative; it is not processed by pledges. Circumstances may occur after a voucher is generated that may alter a voucher's validity period. For instance, a vendor may associate validity periods with support contracts, which may be terminated or extended over time."; } // from BRSKI-CLOUD leaf est-domain { type ietf:uri; description "The est-domain is a URL from which the Pledge should continue doing enrollment rather than with the Cloud Registrar. The pinned-domain-cert contains a trust-anchor which is to be used to authenticate the server found at this URI. "; } leaf additional-configuration { type ietf:uri; description "The additional-configuration attribute contains a URL to which the Pledge can retrieve additional configuration information. The contents of this URL are vendor specific. This is intended to do things like configure a VoIP phone to point to the correct hosted PBX, for example."; } } // end voucher } // end voucher-grouping } <CODE ENDS>¶
[RFC9148] explains how to serialize YANG into CBOR, and for this a series of SID values are required. While [I-D.ietf-core-sid] defines the management process for these values, due to the immaturity of the tooling around this YANG-SID mechanisms, the following values are considered normative. It is believed, however, that they will not change.¶
SID Assigned to --------- -------------------------------------------------- 2451 data /ietf-voucher:voucher/voucher 2452 data /ietf-voucher:voucher/voucher/assertion 2453 data /ietf-voucher:voucher/voucher/created-on 2454 data .../domain-cert-revocation-checks 2455 data /ietf-voucher:voucher/voucher/expires-on 2456 data /ietf-voucher:voucher/voucher/idevid-issuer 2457 data /ietf-voucher:voucher/voucher/last-renewal-date 2458 data /ietf-voucher:voucher/voucher/nonce 2459 data /ietf-voucher:voucher/voucher/pinned-domain-cert 2460 data /ietf-voucher:voucher/voucher/pinned-domain-pubk 2461 data .../pinned-domain-pubk-sha256 2462 data /ietf-voucher:voucher/voucher/serial-number 2463 data .../additional-configuration 2466 data /ietf-voucher:voucher/voucher/est-domain WARNING, obsolete definitions¶
The "assertion" attribute is an enumerated type in [RFC8366], but no values were provided as part of the enumeration. This document provides enumerated values as part of the YANG module.¶
In the JSON serialization, the literal strings from the enumerated types are used so there is no ambiguity.¶
In the CBOR serialization, a small integer is used, and the following values are repeated here. The YANG module should be considered authoritative in the future. No IANA registry is provided or necessary because the YANG module (and this document) would be extended when there are new entries to make.¶
Integer | Assertion Type |
---|---|
0 | verified |
1 | logged |
2 | proximity |
3 | agent-proximity |
[BRSKI], Section 3 defined a Voucher-Request Artifact as an augmented artifact from the Voucher Artifact originally defined in [RFC8366]. That definition has been moved to this document, and translated from YANG-DATA [RFC8040] to the SX:STRUCTURE extension [RFC8791].¶
The following tree diagram illustrates a high-level view of a voucher request document. The notation used in this diagram is described in [RFC8340]. Each node in the diagram is fully described by the YANG module in Section 8.2.¶
module: ietf-voucher-request structure voucher: +-- voucher +-- created-on? | yang:date-and-time +-- expires-on? | yang:date-and-time +-- assertion? enumeration +-- serial-number string +-- idevid-issuer? binary +-- pinned-domain-cert? binary +-- domain-cert-revocation-checks? boolean +-- nonce? binary +-- pinned-domain-pubk? binary +-- pinned-domain-pubk-sha256? binary +-- last-renewal-date? | yang:date-and-time +-- est-domain? ietf:uri +-- additional-configuration? ietf:uri +-- prior-signed-voucher-request? binary +-- proximity-registrar-cert? binary +-- proximity-registrar-pubk? binary +-- proximity-registrar-pubk-sha256? binary +-- agent-signed-data? binary +-- agent-provided-proximity-registrar-cert? binary +-- agent-sign-cert? binary¶
The ietf-voucher-request YANG module is derived from the ietf-voucher module.¶
<CODE BEGINS> module ietf-voucher-request { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-voucher-request"; prefix vcr; import ietf-yang-structure-ext { prefix sx; } import ietf-voucher { prefix vch; description "This module defines the format for a voucher, which is produced by a pledge's manufacturer or delegate (MASA) to securely assign a pledge to an 'owner', so that the pledge may establish a secure connection to the owner's network infrastructure"; reference "RFC 8366: Voucher Artifact for Bootstrapping Protocols"; } organization "IETF ANIMA Working Group"; contact "WG Web: <https://datatracker.ietf.org/wg/anima/> WG List: <mailto:[email protected]> Author: Kent Watsen <mailto:[email protected]> Author: Michael Richardson <mailto:[email protected]> Author: Max Pritikin <mailto:[email protected]> Author: Toerless Eckert <mailto:[email protected]> Author: Qiufang Ma <mailto:[email protected]>"; description "This module defines the format for a voucher request. It is a superset of the voucher itself. It provides content to the MASA for consideration during a voucher request. The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document are to be interpreted as described in BCP 14 (RFC 2119) (RFC 8174) when, and only when, they appear in all capitals, as shown here. Copyright (c) 2024 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Revised BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info). This version of this YANG module is part of RFC XXXX (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself for full legal notices. The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document are to be interpreted as described in BCP 14 (RFC 2119) (RFC 8174) when, and only when, they appear in all capitals, as shown here."; revision 2023-01-10 { description "Initial version"; reference "RFC XXXX: Bootstrapping Remote Secure Key Infrastructure"; } // Top-level statement sx:structure voucher { uses voucher-request-grouping; } // Grouping defined for future usage grouping voucher-request-grouping { description "Grouping to allow reuse/extensions in future work."; uses vch:voucher-artifact-grouping { refine "voucher/created-on" { mandatory false; } refine "voucher/pinned-domain-cert" { mandatory false; description "A pinned-domain-cert field is not valid in a voucher request, and any occurrence MUST be ignored"; } refine "voucher/last-renewal-date" { description "A last-renewal-date field is not valid in a voucher request, and any occurrence MUST be ignored"; } refine "voucher/domain-cert-revocation-checks" { description "The domain-cert-revocation-checks field is not valid in a voucher request, and any occurrence MUST be ignored"; } refine "voucher/assertion" { mandatory false; description "Any assertion included in registrar voucher requests SHOULD be ignored by the MASA."; } augment "voucher" { description "Adds leaf nodes appropriate for requesting vouchers."; leaf prior-signed-voucher-request { type binary; description "If it is necessary to change a voucher, or re-sign and forward a voucher that was previously provided along a protocol path, then the previously signed voucher SHOULD be included in this field. For example, a pledge might sign a voucher request with a proximity-registrar-cert, and the registrar then includes it as the prior-signed-voucher-request field. This is a simple mechanism for a chain of trusted parties to change a voucher request, while maintaining the prior signature information. The Registrar and MASA MAY examine the prior signed voucher information for the purposes of policy decisions. For example this information could be useful to a MASA to determine that both pledge and registrar agree on proximity assertions. The MASA SHOULD remove all prior-signed-voucher-request information when signing a voucher for imprinting so as to minimize the final voucher size."; } leaf proximity-registrar-cert { type binary; description "An X.509 v3 certificate structure as specified by RFC 5280, Section 4 encoded using the ASN.1 distinguished encoding rules (DER), as specified in [ITU.X690.1994]. The first certificate in the Registrar TLS server certificate_list sequence (the end-entity TLS certificate, see [RFC8446]) presented by the Registrar to the Pledge. This MUST be populated in a Pledge's voucher request when a proximity assertion is requested."; } leaf proximity-registrar-pubk { type binary; description "The proximity-registrar-pubk replaces the proximity-registrar-cert in constrained uses of the voucher-request. The proximity-registrar-pubk is the Raw Public Key of the Registrar. This field is encoded as specified in RFC7250, section 3. The ECDSA algorithm MUST be supported. The EdDSA algorithm as specified in draft-ietf-tls-rfc4492bis-17 SHOULD be supported. Support for the DSA algorithm is not recommended. Support for the RSA algorithm is a MAY, but due to size is discouraged."; } leaf proximity-registrar-pubk-sha256 { type binary; description "The proximity-registrar-pubk-sha256 is an alternative to both proximity-registrar-pubk and pinned-domain-cert. In many cases the public key of the domain has already been transmitted during the key agreement protocol, and it is wasteful to transmit the public key another two times. The use of a hash of public key info, at 32-bytes for sha256 is a significant savings compared to an RSA public key, but is only a minor savings compared to a 256-bit ECDSA public-key. Algorithm agility is provided by extensions to this specification which may define a new leaf for another hash type."; } leaf agent-signed-data { type binary; description "The agent-signed-data field contains a JOSE [RFC7515] object provided by the Registrar-Agent to the Pledge. This artifact is signed by the Registrar-Agent and contains a copy of the pledge's serial-number."; } leaf agent-provided-proximity-registrar-cert { type binary; description "An X.509 v3 certificate structure, as specified by RFC 5280, Section 4, encoded using the ASN.1 distinguished encoding rules (DER), as specified in ITU X.690. The first certificate in the registrar TLS server certificate_list sequence (the end-entity TLS certificate; see RFC 8446) presented by the registrar to the registrar-agent and provided to the pledge. This MUST be populated in a pledge's voucher-request when an agent-proximity assertion is requested."; reference "ITU X.690: Information Technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) RFC 5280: Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile RFC 8446: The Transport Layer Security (TLS) Protocol Version 1.3"; } leaf agent-sign-cert { type binary; description "An X.509 v3 certificate structure, as specified by RFC 5280, Section 4, encoded using the ASN.1 distinguished encoding rules (DER), as specified in ITU X.690. This certificate can be used by the pledge, the registrar, and the MASA to verify the signature of agent-signed-data. It is an optional component for the pledge-voucher request. This MUST be populated in a registrar's voucher-request when an agent-proximity assertion is requested."; reference "ITU X.690: Information Technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) RFC 5280: Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"; } } } } } <CODE ENDS>¶
[RFC9148] explains how to serialize YANG into CBOR, and for this a series of SID values are required. While [I-D.ietf-core-sid] defines the management process for these values, due to the immaturity of the tooling around this YANG-SID mechanisms, the following values are considered normative. It is believed, however, that they will not change.¶
SID Assigned to --------- -------------------------------------------------- 2501 data /ietf-voucher-request:voucher/voucher 2502 data /ietf-voucher-request:voucher/voucher/assertion 2503 data /ietf-voucher-request:voucher/voucher/created-on 2504 data .../domain-cert-revocation-checks 2505 data /ietf-voucher-request:voucher/voucher/expires-on 2506 data .../idevid-issuer 2507 data .../last-renewal-date 2508 data /ietf-voucher-request:voucher/voucher/nonce 2509 data .../pinned-domain-cert 2510 data .../prior-signed-voucher-request 2511 data .../proximity-registrar-cert 2512 data .../proximity-registrar-pubk-sha256 2513 data .../proximity-registrar-pubk 2514 data .../serial-number 2515 data .../agent-provided-proximity-registrar-cert 2516 data .../agent-sign-cert 2517 data .../agent-signed-data 2518 data .../pinned-domain-pubk 2519 data .../pinned-domain-pubk-sha256 WARNING, obsolete definitions¶
The "assertion" attribute is an enumerated type, and has values as defined above in Table 2.¶
The lifetimes of vouchers may vary. In some onboarding protocols, the vouchers may be created and consumed immediately, whereas in other onboarding solutions, there may be a significant time delay between when a voucher is created and when it is consumed. In cases when there is a time delay, there is a need for the pledge to ensure that the assertions made when the voucher was created are still valid.¶
A revocation artifact is generally used to verify the continued validity of an assertion such as a PKIX certificate, web token, or a "voucher". With this approach, a potentially long-lived assertion is paired with a reasonably fresh revocation status check to ensure that the assertion is still valid. However, this approach increases solution complexity, as it introduces the need for additional protocols and code paths to distribute and process the revocations.¶
Addressing the shortcomings of revocations, this document recommends instead the use of lightweight renewals of short-lived non-revocable vouchers. That is, rather than issue a long-lived voucher, where the 'expires-on' leaf is set to some distant date, the expectation is for the MASA to instead issue a short-lived voucher, where the 'expires-on' leaf is set to a relatively near date, along with a promise (reflected in the 'last-renewal-date' field) to reissue the voucher again when needed. Importantly, while issuing the initial voucher may incur heavyweight verification checks ("Are you who you say you are?" "Does the pledge actually belong to you?"), reissuing the voucher should be a lightweight process, as it ostensibly only updates the voucher's validity period. With this approach, there is only the one artifact, and only one code path is needed to process it; there is no possibility of a pledge choosing to skip the revocation status check because, for instance, the OCSP Responder is not reachable.¶
While this document recommends issuing short-lived vouchers, the voucher artifact does not restrict the ability to create long-lived voucher, if required; however, no revocation method is described.¶
Note that a voucher may be signed by a chain of intermediate CAs leading up to the trust anchor certificate known by the pledge. Even though the voucher itself is not revocable, it may still be revoked, per se, if one of the intermediate CA certificates is revoked.¶
The solution described herein originally enabled a single voucher to apply to many pledges, using lists of regular expressions to represent ranges of serial-numbers. However, it was determined that blocking the renewal of a voucher that applied to many devices would be excessive when only the ownership for a single pledge needed to be blocked. Thus, the voucher format now only supports a single serial-number to be listed.¶
An attacker could use an expired voucher to gain control over a device that has no understanding of time. The device cannot trust NTP as a time reference, as an attacker could control the NTP stream.¶
There are three things to defend against this: 1) devices are required to verify that the expires-on field has not yet passed, 2) devices without access to time can use nonces to get ephemeral vouchers, and 3) vouchers without expiration times may be used, which will appear in the audit log, informing the security decision.¶
This document defines a voucher format that contains time values for expirations, which require an accurate clock in order to be processed correctly. Vendors planning on issuing vouchers with expiration values must ensure that devices have an accurate clock when shipped from manufacturing facilities and take steps to prevent clock tampering. If it is not possible to ensure clock accuracy, then vouchers with expirations should not be issued.¶
Pursuant the recommendation made in Section 6.1 for the MASA to be deployed as an online voucher signing service, it is RECOMMENDED that the MASA's private key used for signing vouchers is protected by a hardware security module (HSM).¶
If a domain certificate is compromised, then any outstanding vouchers for that domain could be used by the attacker. The domain administrator is clearly expected to initiate revocation of any domain identity certificates (as is normal in PKI solutions).¶
Similarly, they are expected to contact the MASA to indicate that an outstanding (presumably short lifetime) voucher should be blocked from automated renewal. Protocols for voucher distribution are RECOMMENDED to check for revocation of domain identity certificates before the signing of vouchers.¶
The YANG module specified in this document defines the schema for data that is subsequently encapsulated by a CMS signed-data content type, as described in Section 5 of [RFC5652]. As such, all of the YANG modeled data is protected from modification.¶
Implementations should be aware that the signed data is only protected from external modification; the data is still visible. This potential disclosure of information doesn't affect security so much as privacy. In particular, adversaries can glean information such as which devices belong to which organizations and which CRL Distribution Point and/or OCSP Responder URLs are accessed to validate the vouchers. When privacy is important, the CMS signed-data content type SHOULD be encrypted, either by conveying it via a mutually authenticated secure transport protocol (e.g., TLS [RFC5246]) or by encapsulating the signed-data content type with an enveloped-data content type (Section 6 of [RFC5652]), though details for how to do this are outside the scope of this document.¶
The use of YANG to define data structures, via the 'yang-data' statement, is relatively new and distinct from the traditional use of YANG to define an API accessed by network management protocols such as NETCONF [RFC6241] and RESTCONF [RFC8040]. For this reason, these guidelines do not follow template described by Section 3.7 of [YANG-GUIDE].¶
This document registers two URIs in the "IETF XML Registry" [RFC3688].¶
IANA has registered the following:¶
This reference should be updated to point to this document.¶
This document registers two YANG module in the "YANG Module Names" registry [RFC6020].¶
IANA has registred the following:¶
reference: :RFC 8366¶
This reference should be updated to point to this document.¶
IANA has registered the media type: voucher-cms+json, and this registration should be updated to point to this document.¶
IANA has registered the OID 1.2.840.113549.1.9.16.1.40, id-ct-animaJSONVoucher. This registration should be updated to point to this document.¶
The following voucher request has been produced using the IDevID public (certificate) and private key. They are included so that other developers can match the same output.¶
The private RSA key:¶
-----BEGIN EC PRIVATE KEY----- MHcCAQEEIBHNh6r8QRevRuo+tEmBJeFjQKf6bpFA/9NGoltv+9sNoAoGCCqGSM49 AwEHoUQDQgAEA6N1Q4ezfMAKmoecrfb0OBMc1AyEH+BATkF58FsTSyBxs0SbSWLx FjDOuwB9gLGn2TsTUJumJ6VPw5Z/TP4hJw== -----END EC PRIVATE KEY-----¶
The IDevID certificate (public key):¶
-----BEGIN CERTIFICATE----- MIIBrzCCATWgAwIBAgIEHxj+5zAKBggqhkjOPQQDAjAmMSQwIgYDVQQDDBtoaWdo d2F5LXRlc3QuZXhhbXBsZS5jb20gQ0EwIBcNMjEwNDI3MTgyOTMwWhgPMjk5OTEy MzEwMDAwMDBaMBwxGjAYBgNVBAUTETAwLUQwLUU1LUYyLTAwLTAyMFkwEwYHKoZI zj0CAQYIKoZIzj0DAQcDQgAEA6N1Q4ezfMAKmoecrfb0OBMc1AyEH+BATkF58FsT SyBxs0SbSWLxFjDOuwB9gLGn2TsTUJumJ6VPw5Z/TP4hJ6NZMFcwHQYDVR0OBBYE FEWIzJaWAGQ3sLojZWRkVAgGbFatMAkGA1UdEwQCMAAwKwYIKwYBBQUHASAEHxYd aGlnaHdheS10ZXN0LmV4YW1wbGUuY29tOjk0NDMwCgYIKoZIzj0EAwIDaAAwZQIw YirbvjT3G8uF3iaOQwD5DYjId6jdPAhAVLzsPbbccCvDf8oZIZqgq8VRjqrfNt6L AjEAsl1Z+EfH7QOXqMDHqIH6qIbtZ2Q3UXpunKOCTW2tvPM1np1qom1/fyUcA+/w uptx -----END CERTIFICATE-----¶
The Certification Authority that created the IDevID:¶
=============== NOTE: '\' line wrapping per RFC 8792 ================ Certificate: Data: Version: 3 (0x2) Serial Number: 1016146354 (0x3c9129b2) Signature Algorithm: sha256WithRSAEncryption Issuer: CN = highway-test.example.com CA Validity Not Before: Apr 5 19:36:57 2021 GMT Not After : May 6 05:36:57 2021 GMT Subject: CN = highway-test.example.com CA Subject Public Key Info: Public Key Algorithm: rsaEncryption Public-Key: (3072 bit) Modulus: 00:b4:7b:27:42:49:9f:ed:85:47:74:ff:f6:50:cd: 5d:22:1a:64:38:22:f8:09:d2:d6:f3:60:d8:98:7f: e5:84:52:1e:d9:ce:96:b4:dc:a6:43:74:67:27:d9: 9d:42:7d:bf:1a:43:92:9b:d1:dd:34:9b:41:d2:e3: d5:59:b3:40:fc:b3:c9:e1:58:84:3f:87:f7:06:45: 25:26:4c:bf:a1:45:72:a0:0a:5b:86:41:d7:8e:be: d3:38:b5:aa:66:69:bd:3a:fd:e9:b5:b8:a2:79:c4: f0:a5:3c:9e:91:94:32:1e:9c:b0:7f:25:46:5b:76: 1d:86:23:85:b0:62:45:5c:a8:6f:fb:c5:26:e1:dd: a8:f2:68:ab:c5:8c:b4:58:b4:2e:96:49:fa:fe:d2: ea:a5:11:68:c2:8d:f4:58:ab:30:bd:dd:1b:29:97: 00:18:6f:59:40:9c:3a:2a:e4:96:25:bb:12:f4:1a: 11:72:6d:31:f6:b4:e1:cc:d8:9a:0c:aa:a8:aa:a4: 64:e3:f1:06:1c:c0:09:df:62:ba:04:cb:70:b0:c4: f7:ca:35:22:ea:a9:c7:52:e1:ce:27:fb:6c:52:39: b7:22:b3:5d:97:cb:0a:9f:75:a3:af:16:ef:e6:b2: 1b:6a:c3:0b:1d:15:fd:b8:d8:e7:8a:f6:f4:99:1c: 23:97:4b:80:e9:79:a3:85:16:f8:dd:bd:77:ef:3a: 3c:8e:e7:75:56:67:36:3a:dd:42:7b:84:2f:64:2f: 13:0e:fa:b0:3b:11:13:7e:ae:78:a6:2f:46:dd:4b: 11:88:e4:7b:19:ab:21:2d:1f:34:ba:61:cd:51:84: a5:ec:6a:c1:90:20:70:e3:aa:f4:01:fd:0c:6e:cd: 04:47:99:31:70:79:6c:af:41:78:c1:04:2a:43:78: 84:8a:fe:c3:3d:f2:41:c8:2a:a1:10:e0:b7:b4:4f: 4e:e6:26:79:ac:49:64:cf:57:1e:2e:e3:2f:58:bd: 6f:30:00:67:d7:8b:d6:13:60:bf Exponent: 65537 (0x10001) X509v3 extensions: X509v3 Basic Constraints: critical CA:TRUE X509v3 Key Usage: critical Certificate Sign, CRL Sign X509v3 Subject Key Identifier: 33:12:45:B7:1B:10:BE:F3:CB:64:E5:4C:50:80:7C:9D:88:\ 65:74:40 X509v3 Authority Key Identifier: 33:12:45:B7:1B:10:BE:F3:CB:64:E5:4C:50:80:7C:9D:88:\ 65:74:40 Signature Algorithm: sha256WithRSAEncryption Signature Value: 05:37:28:85:37:39:71:87:ec:5c:f0:51:19:55:4a:b7:e0:2a: e6:61:30:d4:e2:2b:ad:7a:db:12:fc:8a:a6:6e:15:82:80:10: fa:5d:67:60:e8:54:14:e3:89:d6:4e:60:89:98:5b:ab:fe:32: 26:aa:02:35:68:4e:c6:2e:ce:08:36:d1:ea:a0:97:3d:76:38: 6e:9d:4b:6f:33:d2:fa:c2:7e:b0:59:bc:75:97:17:d1:1b:c5: c4:58:ae:7b:7e:87:e5:87:2b:8b:6b:10:16:70:7c:c8:65:c7: d0:62:5d:f3:b5:06:af:03:8b:32:dd:88:f0:07:2b:5d:61:58: 61:35:54:a6:ce:95:81:a2:6e:fa:b5:aa:25:e1:41:53:9d:e7: 4b:7e:93:88:79:6b:dd:a3:6e:9a:0d:bd:85:b4:2d:66:b9:cc: 01:13:f1:b5:d5:91:cc:86:5e:a7:c8:4a:8f:4d:9d:f8:17:31: 32:7d:50:d5:c2:79:a0:41:a0:69:83:33:16:14:35:26:10:3b: 23:eb:60:d9:28:68:99:d5:55:61:89:b5:35:5d:8b:fe:b1:96: 32:69:3e:8b:c2:a2:4e:e1:d8:76:04:3c:87:91:5d:66:9e:81: a5:bf:18:2e:3e:39:da:4f:68:57:46:d2:1d:aa:81:51:3b:33: 72:da:e9:7d:12:b6:a1:fc:c7:1d:c1:9c:bd:92:e8:1b:d2:06: e8:0b:82:2a:4f:23:5a:7a:fa:7b:86:a0:d7:c1:46:e7:04:47: 77:11:cd:da:7c:50:32:d2:6f:fd:1e:0a:df:cf:b1:20:d2:86: ce:40:5a:27:61:49:2f:71:f5:04:ac:eb:c6:03:70:a4:70:13: 4a:af:41:35:83:dc:55:c0:29:7f:12:4f:d0:f1:bb:f7:61:4a: 9f:8d:61:b0:5e:89:46:49:e3:27:8b:42:82:5e:af:14:d5:d9: 91:69:3d:af:11:70:5b:a3:92:3b:e3:c8:2a:a4:38:e5:88:f2: 6f:09:f4:e5:04:3b -----BEGIN CERTIFICATE----- MIIELTCCApWgAwIBAgIEPJEpsjANBgkqhkiG9w0BAQsFADAmMSQwIgYDVQQDDBto aWdod2F5LXRlc3QuZXhhbXBsZS5jb20gQ0EwHhcNMjEwNDA1MTkzNjU3WhcNMjEw NTA2MDUzNjU3WjAmMSQwIgYDVQQDDBtoaWdod2F5LXRlc3QuZXhhbXBsZS5jb20g Q0EwggGiMA0GCSqGSIb3DQEBAQUAA4IBjwAwggGKAoIBgQC0eydCSZ/thUd0//ZQ zV0iGmQ4IvgJ0tbzYNiYf+WEUh7Zzpa03KZDdGcn2Z1Cfb8aQ5Kb0d00m0HS49VZ s0D8s8nhWIQ/h/cGRSUmTL+hRXKgCluGQdeOvtM4tapmab06/em1uKJ5xPClPJ6R lDIenLB/JUZbdh2GI4WwYkVcqG/7xSbh3ajyaKvFjLRYtC6WSfr+0uqlEWjCjfRY qzC93RsplwAYb1lAnDoq5JYluxL0GhFybTH2tOHM2JoMqqiqpGTj8QYcwAnfYroE y3CwxPfKNSLqqcdS4c4n+2xSObcis12XywqfdaOvFu/mshtqwwsdFf242OeK9vSZ HCOXS4DpeaOFFvjdvXfvOjyO53VWZzY63UJ7hC9kLxMO+rA7ERN+rnimL0bdSxGI 5HsZqyEtHzS6Yc1RhKXsasGQIHDjqvQB/QxuzQRHmTFweWyvQXjBBCpDeISK/sM9 8kHIKqEQ4Le0T07mJnmsSWTPVx4u4y9YvW8wAGfXi9YTYL8CAwEAAaNjMGEwDwYD VR0TAQH/BAUwAwEB/zAOBgNVHQ8BAf8EBAMCAQYwHQYDVR0OBBYEFDMSRbcbEL7z y2TlTFCAfJ2IZXRAMB8GA1UdIwQYMBaAFDMSRbcbEL7zy2TlTFCAfJ2IZXRAMA0G CSqGSIb3DQEBCwUAA4IBgQAFNyiFNzlxh+xc8FEZVUq34CrmYTDU4iutetsS/Iqm bhWCgBD6XWdg6FQU44nWTmCJmFur/jImqgI1aE7GLs4INtHqoJc9djhunUtvM9L6 wn6wWbx1lxfRG8XEWK57foflhyuLaxAWcHzIZcfQYl3ztQavA4sy3YjwBytdYVhh NVSmzpWBom76taol4UFTnedLfpOIeWvdo26aDb2FtC1mucwBE/G11ZHMhl6nyEqP TZ34FzEyfVDVwnmgQaBpgzMWFDUmEDsj62DZKGiZ1VVhibU1XYv+sZYyaT6LwqJO 4dh2BDyHkV1mnoGlvxguPjnaT2hXRtIdqoFROzNy2ul9Erah/McdwZy9kugb0gbo C4IqTyNaevp7hqDXwUbnBEd3Ec3afFAy0m/9Hgrfz7Eg0obOQFonYUkvcfUErOvG A3CkcBNKr0E1g9xVwCl/Ek/Q8bv3YUqfjWGwXolGSeMni0KCXq8U1dmRaT2vEXBb o5I748gqpDjliPJvCfTlBDs= -----END CERTIFICATE-----¶
The private key for the Certification Authority that created the IDevID:¶
-----BEGIN RSA PRIVATE KEY----- MIIG5AIBAAKCAYEAtHsnQkmf7YVHdP/2UM1dIhpkOCL4CdLW82DYmH/lhFIe2c6W tNymQ3RnJ9mdQn2/GkOSm9HdNJtB0uPVWbNA/LPJ4ViEP4f3BkUlJky/oUVyoApb hkHXjr7TOLWqZmm9Ov3ptbiiecTwpTyekZQyHpywfyVGW3YdhiOFsGJFXKhv+8Um 4d2o8mirxYy0WLQulkn6/tLqpRFowo30WKswvd0bKZcAGG9ZQJw6KuSWJbsS9BoR cm0x9rThzNiaDKqoqqRk4/EGHMAJ32K6BMtwsMT3yjUi6qnHUuHOJ/tsUjm3IrNd l8sKn3Wjrxbv5rIbasMLHRX9uNjnivb0mRwjl0uA6XmjhRb43b137zo8jud1Vmc2 Ot1Ce4QvZC8TDvqwOxETfq54pi9G3UsRiOR7GashLR80umHNUYSl7GrBkCBw46r0 Af0Mbs0ER5kxcHlsr0F4wQQqQ3iEiv7DPfJByCqhEOC3tE9O5iZ5rElkz1ceLuMv WL1vMABn14vWE2C/AgMBAAECggGAAUF6HHP2sOhkfuPpCtbi9wHIALv9jdPxuu/J kgYRysHnhQxy7/85CO8eaKCS/4twcPZXZs4nA96wro73RRCCOz/k/7Rl9yszBNAm WgXer3iUO5jW2jBLF6ssPRDGhr/lmSt7HNCUENTV99BcKhcl4iCk+b2Ap9JCklRc 8cU9Rk/Ft7K/eoLYUhd4Wn+IIbXfPRx2qp89Erj0SaZDNPq79BY9wiRS09iyfkiX /wRoJwsOLrSfunQYDOdlSs+XAs+NKeKmB6chmPhP+sYTXx+zFj+36NRjq2dxkYSH hB9peJ5yzTDhLQpagV5D36VXQsqHawvgEu6cQAfcZ4Iqmnura7zYBysfk4YzzizO rsc9rYGP10UO5W0EpKR/IcNfMGwtDbHe1/7z+0JSVDe/ldht8YrwX3ogd5rNbhlf lUE+D7rof8E8g6Uz4TWI8dpMDaXCzjgz6q2iiW770R5xCphLFbuNh/SnbkYNYNEo k8AN+Fx+w3EO7Cg4aaETB76iNXVBAoHBAOibavF4IYurjni39Z/6vIhO31F7VdNj x9gZ9Om6MmZNFSbU8PLyoQEyI46ygf8TO/BSfiHyUMncohmXWsoUXiFZV412aVqk HgZg+MWsKuYuTmGk/CouYQzd7RtrLl8TpPncXhsJIZ48ppcVGnMHnWZmTLj/Kqf6 oDfsI7QhZy8fUxgIJ3vWoC5zFeQYzXpID4PKkn6mXczt6YiQHFJuvqVjpflVh9WZ leIhCBxoI76j1uU3ZiOEWfkmxSWddIPyIwKBwQDGobnHJ1lIJeny/KaHBVt8OECV wEH6lAxp4jcxYgQCbPVGJzNs+BstjOiY+UDrG2MVyJ+dj+yS2lfDBJcyzo/mE/ox 0odGpKJ9MVk4Mb4m543Jllgb9ZQmJmKzJipqpRetmXV22QB0sJyaYL4M3zroqw17 tEf6HH1vmc9XQwACJOrlm+k41djutwmuCE2JYoNbLdcrCgdfO06Z3bhNkknbrrFD OrB40xx1H5u38kDU7ifieQ4jvUEWk6a5+sIR+rUCgcEAyp+AJEJyblmObShKhgaE LvUN4cvfcppL3rqVtvhkqOrizwXVsryadhE4GjjztsAJiYpCp82OhJl2d3Z6NuhR KxnJg8gvdC7cnM/iRUd5wzN5QePXaeMm1W+I+UZ/iYDySFmnfEOTDmVk9N0EQknS 2f2pPcnBXbybzrscSvCCEvFlj9yikGTg+jV0T1MvwyJ8qWBQBpVjxn1E3poyobgo yKeqUC0qe24ju2zsxNoOsSXFr7x3c976BWi5ec/UTJAjAoHAYZ+GwRzTwqPvsZ7+ 8Yluh0TWaUNOqistVrT5z2mO8uo+OjZ2De563Q5OGzEV+PdC4afy2uurqBlr3Mta zHu9OaVD6EzCc7PisIkagoXgIRrZEuSzdTpjj8R56fauDjAJzSaJFtpcYP2UWkOF 5KmqOEQpokzeu0xZUgpUX1zsmiEu2Z6hJ2/i6KBJP6GRCh7C1INZJywMp39siC7y sB1f83qOYK5toVSQvffE/skvl/dc3vAERQh0/vWekfVugIupAoHBAJj9U/aFU/c5 Kc/94hmeR6TljINMSn0EI9nlJ5FkY2BDmzgeAD9/kNBbPHRjIyMa5Ow7rHO4Lt09 U837yytEcbmErNzMuBhOX+nirXXq1Dp5LMNkHP3gnPy0XC2Cu5m2vH/qbFhIlRER 1GXCxBrWOzovXFu090oIjOhwCbxt7GWZH/GMUUJGXJb+s1CzQNz1qiXKng7XpluA S9jVch5pKqmWvDYYrBXmmCe9Ju0RnBCgOIuGUiCPjEFAy+myLdgQ0A== -----END RSA PRIVATE KEY-----¶
The MASA certificate that signs the voucher:¶
-----BEGIN CERTIFICATE----- MIIBcDCB9qADAgECAgQLhwoxMAoGCCqGSM49BAMCMCYxJDAiBgNVBAMMG2hpZ2h3 YXktdGVzdC5leGFtcGxlLmNvbSBDQTAeFw0yMTA0MTMyMTQwMTZaFw0yMzA0MTMy MTQwMTZaMCgxJjAkBgNVBAMMHWhpZ2h3YXktdGVzdC5leGFtcGxlLmNvbSBNQVNB MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEqgQVo0S54kT4yfkbBxumdHOcHrps qbOpMKmiMln3oB1HAW25MJV+gqi4tMFfSJ0iEwt8kszfWXK4rLgJS2mnpaMQMA4w DAYDVR0TAQH/BAIwADAKBggqhkjOPQQDAgNpADBmAjEArsthLdRcjW6GqgsGHcbT YLoyczYl0yOFSYcczpQjeRqeQVUkHRUioUi7CsCrPBNzAjEAhjxns5Wi4uX5rfkd nME0Mnj1z+rVRwOfAL/QWctRwpgEgSSKURNQsXWyL52otPS5 -----END CERTIFICATE-----¶
The private key for MASA certificate signs the voucher:¶
-----BEGIN EC PRIVATE KEY----- MHcCAQEEIFhdd0eDdzip67kXx72K+KHGJQYJHNy8pkiLJ6CcvxMGoAoGCCqGSM49 AwEHoUQDQgAEqgQVo0S54kT4yfkbBxumdHOcHrpsqbOpMKmiMln3oB1HAW25MJV+ gqi4tMFfSJ0iEwt8kszfWXK4rLgJS2mnpQ== -----END EC PRIVATE KEY-----¶
MIIGjQYJKoZIhvcNAQcCoIIGfjCCBnoCAQExDTALBglghkgBZQMEAgEwggOl BgkqhkiG9w0BBwGgggOWBIIDknsiaWV0Zi12b3VjaGVyLXJlcXVlc3Q6dm91 Y2hlciI6eyJhc3NlcnRpb24iOiJwcm94aW1pdHkiLCJjcmVhdGVkLW9uIjoi MjAyMi0wNy0xMFQxNzowODoxOC41OTgtMDQ6MDAiLCJzZXJpYWwtbnVtYmVy IjoiMDAtRDAtRTUtRjItMDAtMDIiLCJub25jZSI6IjR2VHNwcFMyQ2VxQnpo RWRvaWZNMmciLCJwcm94aW1pdHktcmVnaXN0cmFyLWNlcnQiOiJNSUlDRURD Q0FaYWdBd0lCQWdJRVlGYTZaVEFLQmdncWhrak9QUVFEQWpCdE1SSXdFQVlL Q1pJbWlaUHlMR1FCR1JZQ1kyRXhHVEFYQmdvSmtpYUprL0lzWkFFWkZnbHpZ VzVrWld4dFlXNHhQREE2QmdOVkJBTU1NMlp2ZFc1MFlXbHVMWFJsYzNRdVpY aGhiWEJzWlM1amIyMGdWVzV6ZEhKMWJtY2dSbTkxYm5SaGFXNGdVbTl2ZENC RFFUQWVGdzB5TVRFeE1qUXhPVFF6TURWYUZ3MHlNekV4TWpReE9UUXpNRFZh TUZNeEVqQVFCZ29Ka2lhSmsvSXNaQUVaRmdKallURVpNQmNHQ2dtU0pvbVQ4 aXhrQVJrV0NYTmhibVJsYkcxaGJqRWlNQ0FHQTFVRUF3d1pabTkxYm5SaGFX NHRkR1Z6ZEM1bGVHRnRjR3hsTG1OdmJUQlpNQk1HQnlxR1NNNDlBZ0VHQ0Nx R1NNNDlBd0VIQTBJQUJKWmxVSEkwdXAvbDNlWmY5dkNCYitsSW5vRU1FZ2M3 Um8rWFpDdGpBSTBDRDFmSmZKUi9oSXl5RG1IV3lZaU5GYlJDSDlmeWFyZmt6 Z1g0cDB6VGl6cWpQakE4TUNvR0ExVWRKUUVCL3dRZ01CNEdDQ3NHQVFVRkJ3 TWNCZ2dyQmdFRkJRY0RBZ1lJS3dZQkJRVUhBd0V3RGdZRFZSMFBBUUgvQkFR REFnZUFNQW9HQ0NxR1NNNDlCQU1DQTJnQU1HVUNNUUNkU1pSSjgzTU5SQ3ph Myt2T0JhMDFoNHFadjJsS2hkK0RmaEI0WURodkdwa1dvbFplSEh3TmI3QXRC Q010YlV3Q01Ib054b2lrK3hXN0F0MWhYRWhwMy9NY1hpQWR6blpicFZxK3hK RVppaFhVMzZJQmp2WWdXREY5aXZxeEpwRGJ5dz09In19oIIBszCCAa8wggE1 oAMCAQICBB8Y/ucwCgYIKoZIzj0EAwIwJjEkMCIGA1UEAwwbaGlnaHdheS10 ZXN0LmV4YW1wbGUuY29tIENBMCAXDTIxMDQyNzE4MjkzMFoYDzI5OTkxMjMx MDAwMDAwWjAcMRowGAYDVQQFExEwMC1EMC1FNS1GMi0wMC0wMjBZMBMGByqG SM49AgEGCCqGSM49AwEHA0IABAOjdUOHs3zACpqHnK329DgTHNQMhB/gQE5B efBbE0sgcbNEm0li8RYwzrsAfYCxp9k7E1CbpielT8OWf0z+ISejWTBXMB0G A1UdDgQWBBRFiMyWlgBkN7C6I2VkZFQIBmxWrTAJBgNVHRMEAjAAMCsGCCsG AQUFBwEgBB8WHWhpZ2h3YXktdGVzdC5leGFtcGxlLmNvbTo5NDQzMAoGCCqG SM49BAMCA2gAMGUCMGIq27409xvLhd4mjkMA+Q2IyHeo3TwIQFS87D223HAr w3/KGSGaoKvFUY6q3zbeiwIxALJdWfhHx+0Dl6jAx6iB+qiG7WdkN1F6bpyj gk1trbzzNZ6daqJtf38lHAPv8LqbcTGCAQQwggEAAgEBMC4wJjEkMCIGA1UE AwwbaGlnaHdheS10ZXN0LmV4YW1wbGUuY29tIENBAgQfGP7nMAsGCWCGSAFl AwQCAaBpMBgGCSqGSIb3DQEJAzELBgkqhkiG9w0BBwEwHAYJKoZIhvcNAQkF MQ8XDTIyMDcxMDIxMDgxOFowLwYJKoZIhvcNAQkEMSIEIFc4jO6OnilTLkM/ fcc9p5au4ANjvJvjRXsAKK6+RcTvMAoGCCqGSM49BAMCBEcwRQIhAOjoOdgh Sr+Hk2r2APsfs1+QJba0uRf/+zXA70yb6mRCAiB9aS6Wj8kBcWEvvfsDue41 KWo0ukOBQxdPGpJqg+GAMw==¶
MIIGPQYJKoZIhvcNAQcCoIIGLjCCBioCAQExDTALBglghkgBZQMEAgEwggOU BgkqhkiG9w0BBwGgggOFBIIDgXsiaWV0Zi12b3VjaGVyOnZvdWNoZXIiOnsi YXNzZXJ0aW9uIjoibG9nZ2VkIiwiY3JlYXRlZC1vbiI6IjIwMjItMDctMTBU MTc6MDg6MTguNzIwLTA0OjAwIiwic2VyaWFsLW51bWJlciI6IjAwLUQwLUU1 LUYyLTAwLTAyIiwibm9uY2UiOiI0dlRzcHBTMkNlcUJ6aEVkb2lmTTJnIiwi cGlubmVkLWRvbWFpbi1jZXJ0IjoiTUlJQ0VEQ0NBWmFnQXdJQkFnSUVZRmE2 WlRBS0JnZ3Foa2pPUFFRREFqQnRNUkl3RUFZS0NaSW1pWlB5TEdRQkdSWUNZ MkV4R1RBWEJnb0praWFKay9Jc1pBRVpGZ2x6WVc1a1pXeHRZVzR4UERBNkJn TlZCQU1NTTJadmRXNTBZV2x1TFhSbGMzUXVaWGhoYlhCc1pTNWpiMjBnVlc1 emRISjFibWNnUm05MWJuUmhhVzRnVW05dmRDQkRRVEFlRncweU1URXhNalF4 T1RRek1EVmFGdzB5TXpFeE1qUXhPVFF6TURWYU1GTXhFakFRQmdvSmtpYUpr L0lzWkFFWkZnSmpZVEVaTUJjR0NnbVNKb21UOGl4a0FSa1dDWE5oYm1SbGJH MWhiakVpTUNBR0ExVUVBd3daWm05MWJuUmhhVzR0ZEdWemRDNWxlR0Z0Y0d4 bExtTnZiVEJaTUJNR0J5cUdTTTQ5QWdFR0NDcUdTTTQ5QXdFSEEwSUFCSlps VUhJMHVwL2wzZVpmOXZDQmIrbElub0VNRWdjN1JvK1haQ3RqQUkwQ0QxZkpm SlIvaEl5eURtSFd5WWlORmJSQ0g5ZnlhcmZremdYNHAwelRpenFqUGpBOE1D b0dBMVVkSlFFQi93UWdNQjRHQ0NzR0FRVUZCd01jQmdnckJnRUZCUWNEQWdZ SUt3WUJCUVVIQXdFd0RnWURWUjBQQVFIL0JBUURBZ2VBTUFvR0NDcUdTTTQ5 QkFNQ0EyZ0FNR1VDTVFDZFNaUko4M01OUkN6YTMrdk9CYTAxaDRxWnYybEto ZCtEZmhCNFlEaHZHcGtXb2xaZUhId05iN0F0QkNNdGJVd0NNSG9OeG9payt4 VzdBdDFoWEVocDMvTWNYaUFkem5aYnBWcSt4SkVaaWhYVTM2SUJqdllnV0RG OWl2cXhKcERieXc9PSJ9faCCAXQwggFwMIH2oAMCAQICBAuHCjEwCgYIKoZI zj0EAwIwJjEkMCIGA1UEAwwbaGlnaHdheS10ZXN0LmV4YW1wbGUuY29tIENB MB4XDTIxMDQxMzIxNDAxNloXDTIzMDQxMzIxNDAxNlowKDEmMCQGA1UEAwwd aGlnaHdheS10ZXN0LmV4YW1wbGUuY29tIE1BU0EwWTATBgcqhkjOPQIBBggq hkjOPQMBBwNCAASqBBWjRLniRPjJ+RsHG6Z0c5weumyps6kwqaIyWfegHUcB bbkwlX6CqLi0wV9InSITC3ySzN9ZcrisuAlLaaeloxAwDjAMBgNVHRMBAf8E AjAAMAoGCCqGSM49BAMCA2kAMGYCMQCuy2Et1FyNboaqCwYdxtNgujJzNiXT I4VJhxzOlCN5Gp5BVSQdFSKhSLsKwKs8E3MCMQCGPGezlaLi5fmt+R2cwTQy ePXP6tVHA58Av9BZy1HCmASBJIpRE1CxdbIvnai09LkxggEEMIIBAAIBATAu MCYxJDAiBgNVBAMMG2hpZ2h3YXktdGVzdC5leGFtcGxlLmNvbSBDQQIEC4cK MTALBglghkgBZQMEAgGgaTAYBgkqhkiG9w0BCQMxCwYJKoZIhvcNAQcBMBwG CSqGSIb3DQEJBTEPFw0yMjA3MTAyMTA4MThaMC8GCSqGSIb3DQEJBDEiBCBA 77EhoAybh5R6kK89jDefpxRy8Q6rDo1cnlwgvCzXbzAKBggqhkjOPQQDAgRH MEUCIQD4RnuXwKvYVvwamwVq3VYv7dXcM7bzLg7FXTkhvYqPzwIgXTJxVV5a cLMAroeHgThS5JU5QA2PJMLGF82UcSNTsEY=¶
The authors would like to thank for following for lively discussions on list and in the halls (ordered by last name): William Atwood, Michael H. Behringer, Esko Dijk, Steffen Fries, Sheng Jiang, Thomas Werner.¶