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Why? 

•  Demystify this portion of networking, so 
people don’t drown in the alphabet soup 

•  Think about these things critically 
•  N-party protocols are “the most interesting” 
•  Lots of issues are common to other layers 
•  You can’t design layer n without 

understanding layers n-1 and n+1 
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What can we do in 1 ½ hours? 

•  Understand the concepts 
•  Understand various approaches, and 

tradeoffs, and where to go to learn more 
•  A little of the history: without this, it’s hard 

to really “grok” why things are the way they 
are 
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Outline 

•  layer 2 issues: addresses, multiplexing, 
bridges, spanning tree algorithm 

•  layer 3: addresses, neighbor discovery, 
connectionless vs connection-oriented 
– Routing protocols 

•  Distance vector 
•  Link state 
•  Path vector 
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Why this whole layer 2/3 thing? 

•  Myth: bridges/switches simpler devices, 
designed before routers 

•  OSI Layers 
–  1: physical 
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Why this whole layer 2/3 thing? 

•  Myth: bridges/switches simpler devices, 
designed before routers 

•  OSI Layers 
–  1: physical 
–  2: data link (nbr-nbr, e.g., Ethernet) 
–  3: network (create entire path, e.g., IP) 
–  4 end-to-end (e.g., TCP, UDP) 
–  5 and above: boring 
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Definitions 

•  Repeater: layer 1 relay 
•  Bridge: layer 2 relay 
•  Router: layer 3 relay 
•  OK: What is layer 2 vs layer 3? 

– The “right” definition: layer 2 is neighbor-
neighbor. “Relays” should only be in layer 3! 
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Definitions 

•  Repeater: layer 1 relay 
•  Bridge: layer 2 relay 
•  Router: layer 3 relay 
•  OK: What is layer 2 vs layer 3? 
•  True definition of a layer n protocol: 

Anything designed by a committee whose 
charter is to design a layer n protocol 
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Layer 3 (e.g., IPv4, IPv6, DECnet, 
Appletalk, IPX, etc.) 

•  Put source, destination, hop count on packet 
•  Then along came “the EtherNET” 

–  rethink routing algorithm a bit, but it’s a link not a 
NET! 

•  The world got confused. Built on layer 2 
•  I tried to argue: “But you might want to talk from 

one Ethernet to another!” 
•  “Which will win? Ethernet or DECnet?” 
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Layer 3 packet 

data 

Layer 3 header 

source dest hops 
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Ethernet packet 

data 

Ethernet header 

source dest 
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Ethernet (802) addresses 

•  Assigned in blocks of 224 

•  Given 23-bit constant (OUI) plus g/i bit 
•  all 1’s intended to mean “broadcast” 

OUI 

global/local admin 
group/individual 
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It’s easy to confuse “Ethernet” with 
“network” 

•  Both are multiaccess clouds 
•  But Ethernet does not scale. It can’t replace IP as 

the Internet Protocol 
–  Flat addresses 
–  No hop count 
–  Missing additional protocols (such as neighbor 

discovery) 
–  Perhaps missing features (such as fragmentation, error 

messages, congestion feedback) 
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So where did bridges come from? 
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Problem Statement 

Need something that will sit between two Ethernets, and 
let a station on one Ethernet talk to another 

A C 
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Basic idea 

•  Listen promiscuously 
•  Learn location of source address based on 

source address in packet and port from 
which packet received 

•  Forward based on learned location of 
destination 
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What’s different between this and 
a repeater? 

•  no collisions 
•  with learning, can use more aggregate 

bandwidth than on any one link 
•  no artifacts of LAN technology (# of 

stations in ring, distance of CSMA/CD) 
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But loops are a disaster 
•  No hop count 
•  Exponential proliferation 
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What to do about loops? 

•  Just say “don’t do that” 
•  Or, spanning tree algorithm 

– Bridges gossip amongst themselves 
– Compute loop-free subset 
– Forward data on the spanning tree 
– Other links are backups 
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Algorhyme 
I think that I shall never see 

A graph more lovely than a tree. 
A tree whose crucial property 

Is loop-free connectivity. 
A tree which must be sure to span 

So packets can reach every LAN. 
First the Root must be selected 

By ID it is elected. 
Least cost paths from Root are traced 

In the tree these paths are placed. 
A mesh is made by folks like me. 

Then bridges find a spanning tree. 
Radia Perlman 
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Bother with spanning tree? 

•  Maybe just tell customers “don’t do loops” 
•  First bridge sold... 
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First Bridge Sold 

A C 
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So Bridges were a kludge, 
digging out of a bad decision 

•  Why are they so popular? 
–  plug and play 
–  simplicity 
–  high performance 

•  Will they go away? 
–  because of idiosyncracy of IP, need it for lower 

layer.  
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Note some things about bridges 

•  Certainly don’t get optimal source/
destination paths 

•  Temporary loops are a disaster 
– No hop count 
– Exponential proliferation 

•  But they are wonderfully plug-and-play 



39 

So what is Ethernet? 

•  CSMA/CD, right? Not any more, really... 
•  source, destination (and no hop count) 
•  limited distance, scalability (not any more, 

really) 
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Switches 

•  Ethernet used to be bus 
•  Easier to wire, more robust if star (one huge 

multiport repeater with pt-to-pt links 
•  If store and forward rather than repeater, 

and with learning, more aggregate 
bandwidth 

•  Can cascade devices…do spanning tree 
•  We’re reinvented the bridge! 
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Basic idea of a packet 

Destination address 
Source address 

data 
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When I started 

•  Layer 3 had source, destination addresses 
•  Layer 2 was just point-to-point links 

(mostly) 
•  If layer 2 is multiaccess, then need two 

headers: 
– Layer 3 has ultimate source, destination 
– Layer 2 has next hop source, destination 
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Hdrs inside hdrs 

R1 

R2 R3 

β	

 χ	


α	

 δ	

 ε	

 φ	



S D 

As transmitted by S? (L2 hdr, L3 hdr) 
As transmitted by R1? 
As received by D? 



44 
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S: 

Layer 2 hdr Layer 3 hdr 

Dest=β	


Source=α	



Dest=D 
Source=S 
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R1: 

Layer 2 hdr Layer 3 hdr 

Dest=δ	


Source=χ	



Dest=D 
Source=S 
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Hdrs inside hdrs 
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R2: 

Layer 2 hdr Layer 3 hdr 

Dest=D 
Source=S 
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Hdrs inside hdrs 

R1 

R2 R3 

β	
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 δ	
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R3: 

Layer 2 hdr Layer 3 hdr 

Dest=φ	


Source=ε	



Dest=D 
Source=S 
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What designing “layer 3” meant 

•  Layer 3 addresses 
•  Layer 3 packet format (IP, DECnet) 

– Source, destination, hop count, … 

•  A routing algorithm 
– Exchange information with your neighbors 
– Collectively compute routes with all rtrs 
– Compute a forwarding table 
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Network Layer 

•  connectionless fans designed IPv4, IPv6, 
CLNP, IPX, AppleTalk, DECnet 

•  Connection-oriented reliable fans designed 
X.25 

•  Connection-oriented datagram fans 
designed ATM, MPLS 
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Pieces of network layer 

•  interface to network: addressing, packet 
formats, fragmentation and reassembly, 
error reports 

•  routing protocols 
•  autoconfiguring addresses/nbr discovery/

finding routers 
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Connection-oriented Nets 
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Lots of connection-oriented 
networks 

•  X.25: also have sequence number and ack 
number in packets (like TCP), and layer 3 
guarantees delivery 

•  ATM: datagram, but fixed size packets (48 
bytes data, 5 bytes header) 
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MPLS (multiprotocol label 
switching) 

•  Connectionless, like MPLS, but arbitrary 
sized packets 

•  Add 32-bit hdr on top of IP pkt 
–  20 bit “label” 
– Hop count (hooray!) 
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Hierarchical connections (stacks of 
MPLS labels) 

R1 

R2 

S1 

S8 

S6 

S9 

S5 

S2 

S4 

S3 

D2 
D1 

D8 

D2 D9 

D3 

D5 
D4 

Routers in backbone only need to know about 
one flow: R1-R2 
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MPLS 

•  Originally for faster forwarding than 
parsing IP header 

•  later “traffic engineering” 
•  classify pkts based on more than destination 

address 
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Connectionless Network Layers 

•  Destination, source, hop count 
•  Maybe other stuff 

–  fragmentation 
–  options (e.g., source routing) 
–  error reports 
–  special service requests (priority, custom routes) 
–  congestion indication 

•  Real diff: size of addresses 
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Addresses 

•  802 address “flat”, though assigned with 
OUI/rest. No topological significance 

•  layer 3 addresses: locator/node : 
topologically hierarchical address 

•  interesting difference: 
–  IPv4, IPv6, IPX, AppleTalk: locator specific to 

a link 
– CLNP, DECnet: locator “area”, whole campus 
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Hierarchy within Locator 

•  Assume addresses assigned so that within a circle 
everything shares a prefix 

•  Can summarize lots of circles with a shorter prefix 

27* 23* 

2428* 

2* 

279* 272* 
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New topic: Routing Algorithms 
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Distributed Routing Protocols 

•  Rtrs exchange control info 
•  Use it to calculate forwarding table 
•  Two basic types 

–  distance vector 
–  link state 
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Distance Vector 

•  Know 
–  your own ID 
–  how many cables hanging off your box 
–  cost, for each cable, of getting to nbr 

j 

k 

m 

n 

cost 3 

cost 2 

cost 2 

cost 7 I am “4” 
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Looping Problem 

A B C 

0 1 2 Cost to C 

What is B’s cost to C now? 
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Looping Problem 
worse with high connectivity 

Q Z B A C N M V 
H 
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Split Horizon: one of several 
optimizations 

Don’t tell neighbor N you can reach D if you’d forward to D through N 

A B C 

A B 

C 

D 
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Link State Routing 

•  meet nbrs 
•  Construct Link State Packet (LSP) 

–  who you are 
–  list of (nbr, cost) pairs 

•  Broadcast LSPs to all rtrs (“a miracle occurs”) 
•  Store latest LSP from each rtr 
•  Compute Routes (breadth first, i.e., “shortest path” 

first—well known and efficient algorithm) 
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Computing Routes 

•  Edsgar Dijkstra’s algorithm: 
–  calculate tree of shortest paths from self to each 
–  also calculate cost from self to each 
–  Algorithm: 

•  step 0: put (SELF, 0) on tree 
•  step 1: look at LSP of node (N,c) just put on tree. If 

for any nbr K, this is best path so far to K, put (K, c
+dist(N,K)) on tree, child of N, with dotted line 

•  step 2: make dotted line with smallest cost solid, go 
to step 1 
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We’re done! 
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Distance vector vs link state 

•  Memory: distance vector wins (but memory is 
cheap) 

•  Computation: debatable 
•  Simplicity of coding: simple distance vector wins. 

Complex new-fangled distance vector, no 
•  Convergence speed: link state 
•  Functionality: link state; custom routes, mapping 

the net, troubleshooting, sabotage-proof routing 
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Specific Routing Protocols 

•  Interdomain vs Intradomain 
•  Intradomain: 

–  link state (OSPF, IS-IS) 
–  distance vector (RIP) 

•  Interdomain 
– BGP 
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BGP (Border Gateway Protocol) 

•  “Policies”, not just minimize path 
•  “Path vector”: given reported paths to D 

from each nbr, and configured preferences, 
choose your path to D 
–  don’t ever route through domain X, or not to D, 

or only as last resort 
•  Other policies: don’t tell nbr about D, or lie 

to nbr about D making path look worse 
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Path vector/Distance vector 

•  Distance vector 
– Each router reports to its neighbors {(D,cost)} 
– Each router chooses best path based on min 

(reported cost to D+link cost to nbr) 
•  Path vector 

– Each rtr R reports {(D,list of AS’s in R’s 
chosen path to D)…} 

– Each rtr chooses best path based on configured 
policies 
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BGP Configuration 

•  path preference rules 
•  which nbr to tell about which destinations 
•  how to “edit” the path when telling nbr N 

about prefix P (add fake hops to discourage 
N from using you to get to P) 
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So, world is confusing, what with 
layer 2 and layer 3 
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So, world is confusing, what with 
layer 2 and layer 3 

•  So let’s invent layer 2 ½! 
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What’s wrong with bridges? 

•  Suboptimal routing 
•  Traffic concentration 
•  Temporary loops real dangerous (no hop 

count, exponential proliferation)  ‏
•  Fragile 

–  If lose packets (congestion?), turn on port  
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Why not replace bridges with IP 
routers? 

•  Subtle reason: IP needs address per link.  
•  Layer 3 doesn’t have to work that way 

–  CLNP / DECnet 
•  Bottom level of routing is a whole cloud with the same 

prefix 
•  Routing is to endnodes inside the cloud 
•  Enabled by “ES-IS” protocol, where endnodes periodically 

announce themselves to the routers 
•  Also in ES-IS: routers announce themselves to endnodes… 
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Hierarchy 
One prefix per link One prefix per campus 

2* 

25* 

28* 

292* 

22* 
293* 

2* 
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A bit of history 

•  1992…Internet could have adopted CLNP 
•  Easier to move to a new layer 3 back then 

–  Internet smaller 
–  Not so mission critical 
–  IP hadn’t yet (out of necessity) invented DHCP, NAT, 

so CLNP gave understandable advantages 
•  CLNP still has advantages over IPv6 (e.g., large 

multilink level 1 clouds) 
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TRILL working group in IETF 

•  TRILL= TRansparent Interconnection of 
Lots of Links 

•  Use layer 3 routing, and encapsulate with 
a civilized header 

•  But still look like a bridge from the 
outside 
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Goal 

•  Design so that change can be incremental 
•  With TRILL, replace any subset of bridges 

with RBridges 
–  still looks to IP like one giant Ethernet 
–  the more bridges you replace with RBridges, 

better bandwidth utilization, more stability 
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Run link state protocol 

•  So all the RBridges know how to reach all 
the other RBridges 

•  But don’t know anything about endnodes 
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Why link state? 

•  Since all switches know the complete 
topology, easy to compute lots of trees 
deterministically (we’ll get to that later) 

•  Easy to piggyback “nickname allocation 
protocol” (we’ll get to that later) 



109 

Routing inside campus 

•  First RB encapsulates to last RB 
– So header is “safe” (has hop count) 
–  Inner RBridges only need to know how to reach 

destination RBridge 
•  Still need tree for unknown/multicast 

– But don’t need spanning tree protocol –
compute tree(s) deterministically from the link 
state database 
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Rbridging 

R7 

R1 

R3 

R4 

R6 

R2 

R5 

a 

c 
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Details 

•  What the encapsulated packet looks like 
•  How R1 knows that R2 is the correct “last 

RBridge” 
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Encapsulated Frame 
(Ethernet) 
outer header TRILL header original frame 

dest (nexthop) 
srce (Xmitter) 
Ethertype=TRILL 

first RBridge 
last RBridge 
TTL 

TRILL header specifies RBridges with 2-byte nicknames 
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2-byte Nicknames 

•  Saves hdr room, faster fwd’ing 
•  Dynamically acquired 
•  Choose unused #, announce in LSP 
•  If collision, IDs and priorities break tie 
•  Loser chooses another nickname 
•  Configured nicknames higher priority 
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How does R1 know that R2 is the 
correct “last RBridge”? 

•  If R1 doesn’t, R1 sends packet through a 
tree 

•  When R2 decapsulates, it remembers 
(ingress RBridge, source MAC) 
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Use of “first” and “last” RBridge in 
TRILL header 

•  For Unicast, obvious 
– Route towards “last” RBridge 
– Learn location of source from “first” RBridge 

•  For Multicast/unknown destination 
– Use of “first” 

•  to learn location of source endnode 
•  to do “RPF check” on multicast 

– Use of “last” 
•  To allow first RB to specify a tree 
•  Campus calculates some number of trees 
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Algorhyme v2 
I hope that we shall one day see 

A graph more lovely than a tree. 
A graph to boost efficiency 

While still configuration-free. 
A network where RBridges can 

Route packets to their target LAN. 
The paths they find, to our elation, 

Are least cost paths to destination. 
With packet hop counts we now see, 

The network need not be loop-free. 
RBridges work transparently. 

Without a common spanning tree. 
Ray Perlner 
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Wrap-up 

•  folklore of protocol design 
•  things too obvious to say, but everyone gets 

them wrong 
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Forward Compatibility 

•  Reserved fields 
–  spare bits 
–  ignore them on receipt, set them to zero. Can 

maybe be used for something in the future 
•  TLV encoding 

–  type, length, value 
–  so can skip new TLVs 
–  maybe have range of T’s to ignore if unknown, others 

to drop packet 



119 

Forward Compability 

•  Make fields large enough 
–  IP address, packet identifier, TCP sequence # 

•  Version number 
– what is “new version” vs “new protocol”? 

•  same lower layer multiplex info 

–  therefore, must always be in same place! 
–  drop if version # bigger 
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Fancy version # variants 

•  Might be security threat to trick two Vn 
nodes into talk V(n-1) 

•  So maybe have “highest version I support” 
in addition to “version of this packet” 

•  Or just a bit “I can support higher” (we did 
this for IKEv2) 

•  Maybe have “minor version #”, for 
compatible changes. Old node ignores it 
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Version # 

•  Nobody seems to do this right 
•  IP, IKEv1, SSL unspecified what to do if 

version # different. Most implementations 
ignore it. 

•  SSL v3 moved version field! 
–  v2 sets it to 0.2. v3 sets (different field) to 3.0. 
–  v2 node will ignore version number field, and 

happily parse the rest of the packet 
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Avoid “flag days” 

•  Want to be able to migrate a running 
network 

•  ARPANET routing: ran both routing 
algorithms (but they had to compute the 
same forwarding table) 
–  initially forward based on old, compute both 
–  one by one: forward based on new 
–  one-by-one: delete old 



123 

Parameters 

•  Minimize these: 
–  someone has to document it 
–  customer has to read documentation and 

understand it 
•  How to avoid 

–  architectural constants if possible 
–  automatically configure if possible 
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Settable Parameters 

•  Make sure they can’t be set incompatibly 
across nodes, across layers, etc. (e.g., hello 
time and dead timer) 

•  Make sure they can be set at nodes one at a 
time and the net can stay running 
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Parameter tricks 

•  IS-IS 
–  pairwise parameters reported in “hellos” 
–  area-wide parameters reported in LSPs 

•  Bridges 
– Use Root’s values, sent in spanning tree msgs 



126 

Summary 

•  If things aren’t simple, they won’t work 
•  Good engineering requires understanding 

tradeoffs and previous approaches. 
•  It’s never a “waste of time” to answer “why 

is something that way” 
•  Don’t believe everything you hear 
•  Know the problem you’re solving before 

you try to solve it! 


