
1

Tutorial on Network Layers 2 and 3

Radia Perlman
Intel Labs

(radia@alum.mit.edu)

2

Why?

•  Demystify this portion of networking, so
people don’t drown in the alphabet soup

•  Think about these things critically
•  N-party protocols are “the most interesting”
•  Lots of issues are common to other layers
•  You can’t design layer n without

understanding layers n-1 and n+1

3

What can we do in 1 ½ hours?

•  Understand the concepts
•  Understand various approaches, and

tradeoffs, and where to go to learn more
•  A little of the history: without this, it’s hard

to really “grok” why things are the way they
are

4

Outline

•  layer 2 issues: addresses, multiplexing,
bridges, spanning tree algorithm

•  layer 3: addresses, neighbor discovery,
connectionless vs connection-oriented
– Routing protocols

•  Distance vector
•  Link state
•  Path vector

5

Why this whole layer 2/3 thing?

•  Myth: bridges/switches simpler devices,
designed before routers

•  OSI Layers
–  1: physical

6

Why this whole layer 2/3 thing?

•  Myth: bridges/switches simpler devices,
designed before routers

•  OSI Layers
–  1: physical
–  2: data link (nbr-nbr, e.g., Ethernet)

7

Why this whole layer 2/3 thing?

•  Myth: bridges/switches simpler devices,
designed before routers

•  OSI Layers
–  1: physical
–  2: data link (nbr-nbr, e.g., Ethernet)
–  3: network (create entire path, e.g., IP)

8

Why this whole layer 2/3 thing?

•  Myth: bridges/switches simpler devices,
designed before routers

•  OSI Layers
–  1: physical
–  2: data link (nbr-nbr, e.g., Ethernet)
–  3: network (create entire path, e.g., IP)
–  4 end-to-end (e.g., TCP, UDP)

9

Why this whole layer 2/3 thing?

•  Myth: bridges/switches simpler devices,
designed before routers

•  OSI Layers
–  1: physical
–  2: data link (nbr-nbr, e.g., Ethernet)
–  3: network (create entire path, e.g., IP)
–  4 end-to-end (e.g., TCP, UDP)
–  5 and above: boring

10

Definitions

•  Repeater: layer 1 relay

11

Definitions

•  Repeater: layer 1 relay
•  Bridge: layer 2 relay

12

Definitions

•  Repeater: layer 1 relay
•  Bridge: layer 2 relay
•  Router: layer 3 relay

13

Definitions

•  Repeater: layer 1 relay
•  Bridge: layer 2 relay
•  Router: layer 3 relay
•  OK: What is layer 2 vs layer 3?

14

Definitions

•  Repeater: layer 1 relay
•  Bridge: layer 2 relay
•  Router: layer 3 relay
•  OK: What is layer 2 vs layer 3?

– The “right” definition: layer 2 is neighbor-
neighbor. “Relays” should only be in layer 3!

15

Definitions

•  Repeater: layer 1 relay
•  Bridge: layer 2 relay
•  Router: layer 3 relay
•  OK: What is layer 2 vs layer 3?
•  True definition of a layer n protocol:

Anything designed by a committee whose
charter is to design a layer n protocol

16

Layer 3 (e.g., IPv4, IPv6, DECnet,
Appletalk, IPX, etc.)

•  Put source, destination, hop count on packet
•  Then along came “the EtherNET”

–  rethink routing algorithm a bit, but it’s a link not a
NET!

•  The world got confused. Built on layer 2
•  I tried to argue: “But you might want to talk from

one Ethernet to another!”
•  “Which will win? Ethernet or DECnet?”

17

Layer 3 packet

data

Layer 3 header

source dest hops

18

Ethernet packet

data

Ethernet header

source dest

19

Ethernet (802) addresses

•  Assigned in blocks of 224

•  Given 23-bit constant (OUI) plus g/i bit
•  all 1’s intended to mean “broadcast”

OUI

global/local admin
group/individual

20

It’s easy to confuse “Ethernet” with
“network”

•  Both are multiaccess clouds
•  But Ethernet does not scale. It can’t replace IP as

the Internet Protocol
–  Flat addresses
–  No hop count
–  Missing additional protocols (such as neighbor

discovery)
–  Perhaps missing features (such as fragmentation, error

messages, congestion feedback)

21

So where did bridges come from?

22

Problem Statement

Need something that will sit between two Ethernets, and
let a station on one Ethernet talk to another

A C

23

Basic idea

•  Listen promiscuously
•  Learn location of source address based on

source address in packet and port from
which packet received

•  Forward based on learned location of
destination

24

What’s different between this and
a repeater?

•  no collisions
•  with learning, can use more aggregate

bandwidth than on any one link
•  no artifacts of LAN technology (# of

stations in ring, distance of CSMA/CD)

25

But loops are a disaster
•  No hop count
•  Exponential proliferation

B1 B2 B3

S

26

But loops are a disaster
•  No hop count
•  Exponential proliferation

B1 B2 B3

S

27

But loops are a disaster
•  No hop count
•  Exponential proliferation

B1 B2 B3

S

28

But loops are a disaster
•  No hop count
•  Exponential proliferation

B1 B2 B3

S

29

But loops are a disaster
•  No hop count
•  Exponential proliferation

B1 B2 B3

S

30

What to do about loops?

•  Just say “don’t do that”
•  Or, spanning tree algorithm

– Bridges gossip amongst themselves
– Compute loop-free subset
– Forward data on the spanning tree
– Other links are backups

31

Algorhyme
I think that I shall never see

A graph more lovely than a tree.
A tree whose crucial property

Is loop-free connectivity.
A tree which must be sure to span

So packets can reach every LAN.
First the Root must be selected

By ID it is elected.
Least cost paths from Root are traced

In the tree these paths are placed.
A mesh is made by folks like me.

Then bridges find a spanning tree.
Radia Perlman

32

9 3

4

11
7

10

14

2 5

6

A

X

33

9 3

4

11
7

10

14

2 5

6

A

X

34

9 3

4

11
7

10

14

2 5

6

A

X

35

Bother with spanning tree?

•  Maybe just tell customers “don’t do loops”
•  First bridge sold...

36

First Bridge Sold

A C

37

So Bridges were a kludge,
digging out of a bad decision

•  Why are they so popular?
–  plug and play
–  simplicity
–  high performance

•  Will they go away?
–  because of idiosyncracy of IP, need it for lower

layer.

38

Note some things about bridges

•  Certainly don’t get optimal source/
destination paths

•  Temporary loops are a disaster
– No hop count
– Exponential proliferation

•  But they are wonderfully plug-and-play

39

So what is Ethernet?

•  CSMA/CD, right? Not any more, really...
•  source, destination (and no hop count)
•  limited distance, scalability (not any more,

really)

40

Switches

•  Ethernet used to be bus
•  Easier to wire, more robust if star (one huge

multiport repeater with pt-to-pt links
•  If store and forward rather than repeater,

and with learning, more aggregate
bandwidth

•  Can cascade devices…do spanning tree
•  We’re reinvented the bridge!

41

Basic idea of a packet

Destination address
Source address

data

42

When I started

•  Layer 3 had source, destination addresses
•  Layer 2 was just point-to-point links

(mostly)
•  If layer 2 is multiaccess, then need two

headers:
– Layer 3 has ultimate source, destination
– Layer 2 has next hop source, destination

43

Hdrs inside hdrs

R1

R2 R3

β	

 χ	

α	

 δ	

 ε	

 φ	

S D

As transmitted by S? (L2 hdr, L3 hdr)
As transmitted by R1?
As received by D?

44

Hdrs inside hdrs

R1

R2 R3

β	

 χ	

α	

 δ	

 ε	

 φ	

S D

S:

Layer 2 hdr Layer 3 hdr

Dest=β	

Source=α	

Dest=D
Source=S

45

Hdrs inside hdrs

R1

R2 R3

β	

 χ	

α	

 δ	

 ε	

 φ	

S D

R1:

Layer 2 hdr Layer 3 hdr

Dest=δ	

Source=χ	

Dest=D
Source=S

46

Hdrs inside hdrs

R1

R2 R3

β	

 χ	

α	

 δ	

 ε	

 φ	

S D

R2:

Layer 2 hdr Layer 3 hdr

Dest=D
Source=S

47

Hdrs inside hdrs

R1

R2 R3

β	

 χ	

α	

 δ	

 ε	

 φ	

S D

R3:

Layer 2 hdr Layer 3 hdr

Dest=φ	

Source=ε	

Dest=D
Source=S

48

What designing “layer 3” meant

•  Layer 3 addresses
•  Layer 3 packet format (IP, DECnet)

– Source, destination, hop count, …

•  A routing algorithm
– Exchange information with your neighbors
– Collectively compute routes with all rtrs
– Compute a forwarding table

49

Network Layer

•  connectionless fans designed IPv4, IPv6,
CLNP, IPX, AppleTalk, DECnet

•  Connection-oriented reliable fans designed
X.25

•  Connection-oriented datagram fans
designed ATM, MPLS

50

Pieces of network layer

•  interface to network: addressing, packet
formats, fragmentation and reassembly,
error reports

•  routing protocols
•  autoconfiguring addresses/nbr discovery/

finding routers

51

Connection-oriented Nets

S

A
R1

R2

R3

R4

R5

D

3

4

7

2

4

3

1

2

3

(3,51)=(7,21)
(4,8)=(7,92)
(4,17)=(7,12)

(2,12)=(3,15)
(2,92)=(4,8)

(1,8)=(3,6)
(2,15)=(1,7) VC=8, 92, 8, 6

8

92

8

6

52

Lots of connection-oriented
networks

•  X.25: also have sequence number and ack
number in packets (like TCP), and layer 3
guarantees delivery

•  ATM: datagram, but fixed size packets (48
bytes data, 5 bytes header)

53

MPLS (multiprotocol label
switching)

•  Connectionless, like MPLS, but arbitrary
sized packets

•  Add 32-bit hdr on top of IP pkt
–  20 bit “label”
– Hop count (hooray!)

54

Hierarchical connections (stacks of
MPLS labels)

R1

R2

S1

S8

S6

S9

S5

S2

S4

S3

D2
D1

D8

D2 D9

D3

D5
D4

Routers in backbone only need to know about
one flow: R1-R2

55

MPLS

•  Originally for faster forwarding than
parsing IP header

•  later “traffic engineering”
•  classify pkts based on more than destination

address

56

Connectionless Network Layers

•  Destination, source, hop count
•  Maybe other stuff

–  fragmentation
–  options (e.g., source routing)
–  error reports
–  special service requests (priority, custom routes)
–  congestion indication

•  Real diff: size of addresses

57

Addresses

•  802 address “flat”, though assigned with
OUI/rest. No topological significance

•  layer 3 addresses: locator/node :
topologically hierarchical address

•  interesting difference:
–  IPv4, IPv6, IPX, AppleTalk: locator specific to

a link
– CLNP, DECnet: locator “area”, whole campus

58

Hierarchy within Locator

•  Assume addresses assigned so that within a circle
everything shares a prefix

•  Can summarize lots of circles with a shorter prefix

27* 23*

2428*

2*

279* 272*

59

New topic: Routing Algorithms

60

Distributed Routing Protocols

•  Rtrs exchange control info
•  Use it to calculate forwarding table
•  Two basic types

–  distance vector
–  link state

61

Distance Vector

•  Know
–  your own ID
–  how many cables hanging off your box
–  cost, for each cable, of getting to nbr

j

k

m

n

cost 3

cost 2

cost 2

cost 7 I am “4”

62

j

k

m

n

cost 3

cost 2

cost 2

cost 7 I am “4”

distance vector rcv’d from cable j

distance vector rcv’d from cable k

distance vector rcv’d from cable m

distance vector rcv’d from cable n

your own calculated distance vector

your own calculated forwarding table

12 3 15 3 12 5 3 18 0 7 15

5 8 3 2 10 7 4 20 5 0 15

0 5 3 2 19 9 5 22 2 4 7

6 2 0 7 8 5 11 8 12 3 2

2

m

6

j

5

m

0

0

12

k

8

j

6

k/j

cost 3

cost 2

cost 2

cost 7

19

n

3 ?

j ?

?

?

63

j

k

m

n

cost 3

cost 2

cost 2

cost 7 I am “4”

distance vector rcv’d from cable j

distance vector rcv’d from cable k

distance vector rcv’d from cable m

distance vector rcv’d from cable n

your own calculated distance vector

your own calculated forwarding table

12 3 15 3 12 5 3 18 0 7 15

5 8 3 2 10 7 4 20 5 0 15

0 5 3 2 19 9 5 22 2 4 7

6 2 0 7 8 5 11 8 12 3 2

2

m

6

j

5

m

0

0

12

k

8

j

6

k/j

cost 3

cost 2

cost 2

cost 7

19

n

3 ?

j ?

?

?

64

j

k

m

n

cost 3

cost 2

cost 2

cost 7 I am “4”

distance vector rcv’d from cable j

distance vector rcv’d from cable k

distance vector rcv’d from cable m

distance vector rcv’d from cable n

your own calculated distance vector

your own calculated forwarding table

12 3 15 3 12 5 3 18 0 7 15

5 8 3 2 10 7 4 20 5 0 15

0 5 3 2 19 9 5 22 2 4 7

6 2 0 7 8 5 11 8 12 3 2

2

m

6

j

5

m

0

0

12

k

8

j

6

k/j

cost 3

cost 2

cost 2

cost 7

19

n

3 ?

j ?

?

?

65

j

k

m

n

cost 3

cost 2

cost 2

cost 7 I am “4”

distance vector rcv’d from cable j

distance vector rcv’d from cable k

distance vector rcv’d from cable m

distance vector rcv’d from cable n

your own calculated distance vector

your own calculated forwarding table

12 3 15 3 12 5 3 18 0 7 15

5 8 3 2 10 7 4 20 5 0 15

0 5 3 2 19 9 5 22 2 4 7

6 2 0 7 8 5 11 8 12 3 2

2

m

6

j

5

m

0

0

12

k

8

j

6

k/j

cost 3

cost 2

cost 2

cost 7

19

n

3 ?

j ?

?

?

66

j

k

m

n

cost 3

cost 2

cost 2

cost 7 I am “4”

distance vector rcv’d from cable j

distance vector rcv’d from cable k

distance vector rcv’d from cable m

distance vector rcv’d from cable n

your own calculated distance vector

your own calculated forwarding table

12 3 15 3 12 5 3 18 0 7 15

5 8 3 2 10 7 4 20 5 0 15

0 5 3 2 19 9 5 22 2 4 7

6 2 0 7 8 5 11 8 12 3 2

2

m

6

j

5

m

0

0

12

k

8

j

6

k/j

cost 3

cost 2

cost 2

cost 7

19

n

3 ?

j ?

?

?

67

j

k

m

n

cost 3

cost 2

cost 2

cost 7 I am “4”

distance vector rcv’d from cable j

distance vector rcv’d from cable k

distance vector rcv’d from cable m

distance vector rcv’d from cable n

your own calculated distance vector

your own calculated forwarding table

12 3 15 3 12 5 3 18 0 7 15

5 8 3 2 10 7 4 20 5 0 15

0 5 3 2 19 9 5 22 2 4 7

6 2 0 7 8 5 11 8 12 3 2

2

m

6

j

5

m

0

0

12

k

8

j

6

k/j

cost 3

cost 2

cost 2

cost 7

19

n

3 ?

j ?

?

?

68

Looping Problem

A B C

69

Looping Problem

A B C

0 1 2 Cost to C

70

Looping Problem

A B C

0 1 2 Cost to C

direction
towards C

direction
towards C

71

Looping Problem

A B C

0 1 2 Cost to C

What is B’s cost to C now?

72

Looping Problem

A B C

0 1 2 Cost to C

3

73

Looping Problem

A B C

0 1 2 Cost to C

3

direction
towards C

direction
towards C

74

Looping Problem

A B C

0 1 2 Cost to C

3 4

direction
towards C

direction
towards C

75

Looping Problem

A B C

0 1 2 Cost to C

3 4

5

direction
towards C

direction
towards C

76

Looping Problem
worse with high connectivity

Q Z B A C N M V
H

77

Split Horizon: one of several
optimizations

Don’t tell neighbor N you can reach D if you’d forward to D through N

A B C

A B

C

D

78

Link State Routing

•  meet nbrs
•  Construct Link State Packet (LSP)

–  who you are
–  list of (nbr, cost) pairs

•  Broadcast LSPs to all rtrs (“a miracle occurs”)
•  Store latest LSP from each rtr
•  Compute Routes (breadth first, i.e., “shortest path”

first—well known and efficient algorithm)

79

A B C

D E F

G

6 2
5

1

2 1 2
2 4

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

80

Computing Routes

•  Edsgar Dijkstra’s algorithm:
–  calculate tree of shortest paths from self to each
–  also calculate cost from self to each
–  Algorithm:

•  step 0: put (SELF, 0) on tree
•  step 1: look at LSP of node (N,c) just put on tree. If

for any nbr K, this is best path so far to K, put (K, c
+dist(N,K)) on tree, child of N, with dotted line

•  step 2: make dotted line with smallest cost solid, go
to step 1

81

Look at LSP of new tree node
A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2) F(2) G(5)

82

Make shortest TENT solid
A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2) F(2) G(5)

83

Look at LSP of newest tree node
A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2) F(2) G(5)

E(4) G(3)

84

Make shortest TENT solid
A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2) F(2)

E(4) G(3)

85

Look at LSP of newest tree node
A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2) F(2)

E(3) G(3)
A(8)

86

Make shortest TENT solid
A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2) F(2)

E(3) G(3)
A(8)

87

Look at LSP of newest tree node
A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2) F(2)

E(3) G(3)
A(8)

D(5)

88

Make shortest TENT solid
A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2) F(2)

E(3) G(3)
A(8)

D(5)

89

Look at newest tree node’s LSP
A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2) F(2)

E(3) G(3)
A(8)

D(5)

90

Make shortest TENT solid
A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2) F(2)

E(3) G(3)
A(8)

D(5)

91

Look at newest node’s LSP
A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2) F(2)

E(3) G(3)
A(8)

D(5)
A(7)

92

Make shortest TENT solid
A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2) F(2)

E(3) G(3)

D(5)
A(7)

93

We’re done!
A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2) F(2)

E(3) G(3)

D(5)
A(7)

94

Distance vector vs link state

•  Memory: distance vector wins (but memory is
cheap)

•  Computation: debatable
•  Simplicity of coding: simple distance vector wins.

Complex new-fangled distance vector, no
•  Convergence speed: link state
•  Functionality: link state; custom routes, mapping

the net, troubleshooting, sabotage-proof routing

95

Specific Routing Protocols

•  Interdomain vs Intradomain
•  Intradomain:

–  link state (OSPF, IS-IS)
–  distance vector (RIP)

•  Interdomain
– BGP

96

BGP (Border Gateway Protocol)

•  “Policies”, not just minimize path
•  “Path vector”: given reported paths to D

from each nbr, and configured preferences,
choose your path to D
–  don’t ever route through domain X, or not to D,

or only as last resort
•  Other policies: don’t tell nbr about D, or lie

to nbr about D making path look worse

97

Path vector/Distance vector

•  Distance vector
– Each router reports to its neighbors {(D,cost)}
– Each router chooses best path based on min

(reported cost to D+link cost to nbr)
•  Path vector

– Each rtr R reports {(D,list of AS’s in R’s
chosen path to D)…}

– Each rtr chooses best path based on configured
policies

98

BGP Configuration

•  path preference rules
•  which nbr to tell about which destinations
•  how to “edit” the path when telling nbr N

about prefix P (add fake hops to discourage
N from using you to get to P)

99

So, world is confusing, what with
layer 2 and layer 3

100

So, world is confusing, what with
layer 2 and layer 3

•  So let’s invent layer 2 ½!

101 101

What’s wrong with bridges?

•  Suboptimal routing
•  Traffic concentration
•  Temporary loops real dangerous (no hop

count, exponential proliferation) ‏
•  Fragile

–  If lose packets (congestion?), turn on port

102 102

Why not replace bridges with IP
routers?

•  Subtle reason: IP needs address per link.
•  Layer 3 doesn’t have to work that way

–  CLNP / DECnet
•  Bottom level of routing is a whole cloud with the same

prefix
•  Routing is to endnodes inside the cloud
•  Enabled by “ES-IS” protocol, where endnodes periodically

announce themselves to the routers
•  Also in ES-IS: routers announce themselves to endnodes…

103 103

Hierarchy
One prefix per link One prefix per campus

2*

25*

28*

292*

22*
293*

2*

104 104

A bit of history

•  1992…Internet could have adopted CLNP
•  Easier to move to a new layer 3 back then

–  Internet smaller
–  Not so mission critical
–  IP hadn’t yet (out of necessity) invented DHCP, NAT,

so CLNP gave understandable advantages
•  CLNP still has advantages over IPv6 (e.g., large

multilink level 1 clouds)

105

TRILL working group in IETF

•  TRILL= TRansparent Interconnection of
Lots of Links

•  Use layer 3 routing, and encapsulate with
a civilized header

•  But still look like a bridge from the
outside

106

Goal

•  Design so that change can be incremental
•  With TRILL, replace any subset of bridges

with RBridges
–  still looks to IP like one giant Ethernet
–  the more bridges you replace with RBridges,

better bandwidth utilization, more stability

107

Run link state protocol

•  So all the RBridges know how to reach all
the other RBridges

•  But don’t know anything about endnodes

108

Why link state?

•  Since all switches know the complete
topology, easy to compute lots of trees
deterministically (we’ll get to that later)

•  Easy to piggyback “nickname allocation
protocol” (we’ll get to that later)

109

Routing inside campus

•  First RB encapsulates to last RB
– So header is “safe” (has hop count)
–  Inner RBridges only need to know how to reach

destination RBridge
•  Still need tree for unknown/multicast

– But don’t need spanning tree protocol –
compute tree(s) deterministically from the link
state database

110

Rbridging

R7

R1

R3

R4

R6

R2

R5

a

c

111

Details

•  What the encapsulated packet looks like
•  How R1 knows that R2 is the correct “last

RBridge”

112

Encapsulated Frame
(Ethernet)
outer header TRILL header original frame

dest (nexthop)
srce (Xmitter)
Ethertype=TRILL

first RBridge
last RBridge
TTL

TRILL header specifies RBridges with 2-byte nicknames

113

2-byte Nicknames

•  Saves hdr room, faster fwd’ing
•  Dynamically acquired
•  Choose unused #, announce in LSP
•  If collision, IDs and priorities break tie
•  Loser chooses another nickname
•  Configured nicknames higher priority

114

How does R1 know that R2 is the
correct “last RBridge”?

•  If R1 doesn’t, R1 sends packet through a
tree

•  When R2 decapsulates, it remembers
(ingress RBridge, source MAC)

115

Use of “first” and “last” RBridge in
TRILL header

•  For Unicast, obvious
– Route towards “last” RBridge
– Learn location of source from “first” RBridge

•  For Multicast/unknown destination
– Use of “first”

•  to learn location of source endnode
•  to do “RPF check” on multicast

– Use of “last”
•  To allow first RB to specify a tree
•  Campus calculates some number of trees

116

Algorhyme v2
I hope that we shall one day see

A graph more lovely than a tree.
A graph to boost efficiency

While still configuration-free.
A network where RBridges can

Route packets to their target LAN.
The paths they find, to our elation,

Are least cost paths to destination.
With packet hop counts we now see,

The network need not be loop-free.
RBridges work transparently.

Without a common spanning tree.
Ray Perlner

117

Wrap-up

•  folklore of protocol design
•  things too obvious to say, but everyone gets

them wrong

118

Forward Compatibility

•  Reserved fields
–  spare bits
–  ignore them on receipt, set them to zero. Can

maybe be used for something in the future
•  TLV encoding

–  type, length, value
–  so can skip new TLVs
–  maybe have range of T’s to ignore if unknown, others

to drop packet

119

Forward Compability

•  Make fields large enough
–  IP address, packet identifier, TCP sequence #

•  Version number
– what is “new version” vs “new protocol”?

•  same lower layer multiplex info

–  therefore, must always be in same place!
–  drop if version # bigger

120

Fancy version # variants

•  Might be security threat to trick two Vn
nodes into talk V(n-1)

•  So maybe have “highest version I support”
in addition to “version of this packet”

•  Or just a bit “I can support higher” (we did
this for IKEv2)

•  Maybe have “minor version #”, for
compatible changes. Old node ignores it

121

Version #

•  Nobody seems to do this right
•  IP, IKEv1, SSL unspecified what to do if

version # different. Most implementations
ignore it.

•  SSL v3 moved version field!
–  v2 sets it to 0.2. v3 sets (different field) to 3.0.
–  v2 node will ignore version number field, and

happily parse the rest of the packet

122

Avoid “flag days”

•  Want to be able to migrate a running
network

•  ARPANET routing: ran both routing
algorithms (but they had to compute the
same forwarding table)
–  initially forward based on old, compute both
–  one by one: forward based on new
–  one-by-one: delete old

123

Parameters

•  Minimize these:
–  someone has to document it
–  customer has to read documentation and

understand it
•  How to avoid

–  architectural constants if possible
–  automatically configure if possible

124

Settable Parameters

•  Make sure they can’t be set incompatibly
across nodes, across layers, etc. (e.g., hello
time and dead timer)

•  Make sure they can be set at nodes one at a
time and the net can stay running

125

Parameter tricks

•  IS-IS
–  pairwise parameters reported in “hellos”
–  area-wide parameters reported in LSPs

•  Bridges
– Use Root’s values, sent in spanning tree msgs

126

Summary

•  If things aren’t simple, they won’t work
•  Good engineering requires understanding

tradeoffs and previous approaches.
•  It’s never a “waste of time” to answer “why

is something that way”
•  Don’t believe everything you hear
•  Know the problem you’re solving before

you try to solve it!

